1 |
#! /usr/bin/env python
|
2 |
import os
|
3 |
import glob
|
4 |
import math
|
5 |
|
6 |
import ROOT
|
7 |
|
8 |
from optparse import OptionParser
|
9 |
|
10 |
parser = OptionParser()
|
11 |
|
12 |
|
13 |
############################################
|
14 |
# Job steering #
|
15 |
############################################
|
16 |
|
17 |
# Input inputFiles to use. This is in "glob" format, so you can use wildcards.
|
18 |
# If you get a "cannot find file" type of error, be sure to use "\*" instead
|
19 |
# of "*" to make sure you don't confuse the shell.
|
20 |
parser.add_option('--inputFiles', metavar='F', type='string', action='store',
|
21 |
default = "",
|
22 |
dest='inputFiles',
|
23 |
help='Input files')
|
24 |
|
25 |
parser.add_option('--txtfiles', metavar='F', type='string', action='store',
|
26 |
default = "",
|
27 |
dest='txtfiles',
|
28 |
help='Input txt files')
|
29 |
|
30 |
parser.add_option("--onDcache", action='store_true',
|
31 |
default=True,
|
32 |
dest="onDcache",
|
33 |
help="onDcache(1), onDcache(0)")
|
34 |
|
35 |
# Output name to use.
|
36 |
parser.add_option('--outputFile', metavar='F', type='string', action='store',
|
37 |
default='shyft_fwlite.root',
|
38 |
dest='outputFile',
|
39 |
help='output file name')
|
40 |
|
41 |
# Using MC info or not. For MC, truth information is accessed.
|
42 |
parser.add_option('--doMC', metavar='F', action='store_true',
|
43 |
default=False,
|
44 |
dest='doMC',
|
45 |
help='Check MC Information')
|
46 |
|
47 |
# Which lepton type to use
|
48 |
parser.add_option('--lepType', metavar='F', type='int', action='store',
|
49 |
default=0,
|
50 |
dest='lepType',
|
51 |
help='Lepton type. Options are 0 = muons, 1 = electrons')
|
52 |
|
53 |
# Invert MET cut?
|
54 |
parser.add_option('--invertMET', action='store_true',
|
55 |
default=False,
|
56 |
dest='invertMET',
|
57 |
help='Invert MET cut')
|
58 |
|
59 |
# Remove MET cut?
|
60 |
parser.add_option('--relaxMET', action='store_true',
|
61 |
default=False,
|
62 |
dest='relaxMET',
|
63 |
help='Relax MET cut')
|
64 |
|
65 |
# Invert PF isolation cut?
|
66 |
parser.add_option('--invertPFIso', action='store_true',
|
67 |
default=False,
|
68 |
dest='invertPFIso',
|
69 |
help='Invert PF isolation cut')
|
70 |
|
71 |
|
72 |
(options, args) = parser.parse_args()
|
73 |
|
74 |
argv = []
|
75 |
|
76 |
# Import everything from ROOT
|
77 |
import ROOT
|
78 |
ROOT.gROOT.Macro("rootlogon.C")
|
79 |
|
80 |
# Import stuff from FWLite
|
81 |
import sys
|
82 |
from DataFormats.FWLite import Events, Handle
|
83 |
|
84 |
#infile = open( options.inputFiles )
|
85 |
#infileStr = infile.read().rstrip()
|
86 |
|
87 |
#print 'Getting files from this dir: ' + infileStr
|
88 |
|
89 |
# Get the file list.
|
90 |
#files = glob.glob( infileStr )
|
91 |
|
92 |
# Get the file list.
|
93 |
if options.inputFiles:
|
94 |
files = glob.glob( options.files )
|
95 |
print 'getting files', files
|
96 |
elif options.txtfiles:
|
97 |
files = []
|
98 |
with open(options.txtfiles, 'r') as input_:
|
99 |
for line in input_:
|
100 |
files.append(line.strip())
|
101 |
else:
|
102 |
files = []
|
103 |
|
104 |
print 'getting files: ', files
|
105 |
|
106 |
if options.onDcache:
|
107 |
files = ["dcap://" + x for x in files]
|
108 |
#print 'new files', *files, sep='\n'
|
109 |
#print('new files', files[0], files[1], ..., sep='\n')
|
110 |
|
111 |
fname = options.txtfiles
|
112 |
fileN = fname[fname.rfind('/')+1:]
|
113 |
|
114 |
print files
|
115 |
|
116 |
|
117 |
# Create the output file.
|
118 |
f = ROOT.TFile(options.outputFile, "recreate")
|
119 |
f.cd()
|
120 |
|
121 |
|
122 |
# Make histograms
|
123 |
print "Creating histograms"
|
124 |
secvtxMassHist = ROOT.TH1F('secvtxMassHist', "Secondary Vertex Mass", 150, 0., 5.0)
|
125 |
secvtxMassHistB = ROOT.TH1F('secvtxMassHistB', "Secondary Vertex Mass, b jets", 150, 0., 5.0)
|
126 |
secvtxMassHistC = ROOT.TH1F('secvtxMassHistC', "Secondary Vertex Mass, c jets", 150, 0., 5.0)
|
127 |
secvtxMassHistL = ROOT.TH1F('secvtxMassHistL', "Secondary Vertex Mass, udsg jets", 150, 0., 5.0)
|
128 |
metVsIso = ROOT.TH2F('metVsIso', 'MET Versus PFIsolation', 15, 0., 150., 100, 0., 2.5)
|
129 |
|
130 |
jetPtHist = ROOT.TH1F('jetPtHist', 'Jet p_{T}', 150, 0., 600.)
|
131 |
m3Hist = ROOT.TH1F('m3Hist', 'M3 Histogram', 150, 0., 600.)
|
132 |
#Jet Multiplicity
|
133 |
nJetHist = ROOT.TH1F('nJetHist', 'Jet Multiplicity', 7, 3.5, 10.5)
|
134 |
#Muon pt
|
135 |
muPtHist = ROOT.TH1F('muPtHist', 'Muon pt', 75, 0., 300.)
|
136 |
#Muon eta
|
137 |
muEtaHist = ROOT.TH1F('muEtaHist', 'Muon eta', 40, -2.2, 2.2)
|
138 |
#MET
|
139 |
metHist = ROOT.TH1F('metHist', 'MET', 50, 0., 200.)
|
140 |
#HT
|
141 |
#this is a scalar sum of pt in the events -- we will choose whether of jets, leptons and jets, etc.
|
142 |
htHist = ROOT.TH1F('htHist', 'HT', 250, 0., 1000.)
|
143 |
#transverse mass
|
144 |
transMHist = ROOT.TH1F('transMHist', 'Transverse mass', 75, 0., 300)
|
145 |
#N btags
|
146 |
nBTagHist = ROOT.TH1F('nBTagHist', 'Btag jet multiplicity', 4, 0.5, 4.5)
|
147 |
|
148 |
############################################
|
149 |
# Physics level parameters for systematics #
|
150 |
############################################
|
151 |
|
152 |
# Kinematic cuts:
|
153 |
jetPtMin = 30.0
|
154 |
leadJetPtMin = 30.0
|
155 |
isoMax = 0.12
|
156 |
ssvheCut = 1.74
|
157 |
minJets = 4
|
158 |
|
159 |
if options.lepType == 0 :
|
160 |
muonPtMin = 45.0
|
161 |
electronPtMin = 20.0
|
162 |
metMin = 20.0
|
163 |
lepStr = 'Mu'
|
164 |
else:
|
165 |
muonPtMin = 20.0
|
166 |
electronPtMin = 35.0
|
167 |
metMin = 20.0
|
168 |
lepStr = 'Ele'
|
169 |
|
170 |
|
171 |
|
172 |
|
173 |
events = Events (files)
|
174 |
|
175 |
# Make the entirety of the handles required for the
|
176 |
# analysis.
|
177 |
postfix = ""
|
178 |
if options.invertPFIso :
|
179 |
postfix = "Loose"
|
180 |
|
181 |
puHandle = Handle( "std::vector<float>" )
|
182 |
puLabel = ( "PUNtupleDumper", "PUweightNominalUpDown" )
|
183 |
|
184 |
|
185 |
jetPtHandle = Handle( "std::vector<float>" )
|
186 |
jetPtLabel = ( "pfShyftTupleJets" + lepStr + postfix, "pt" )
|
187 |
jetEtaHandle = Handle( "std::vector<float>" )
|
188 |
jetEtaLabel = ( "pfShyftTupleJets" + lepStr + postfix, "eta" )
|
189 |
jetPhiHandle = Handle( "std::vector<float>" )
|
190 |
jetPhiLabel = ( "pfShyftTupleJets" + lepStr + postfix, "phi" )
|
191 |
jetMassHandle = Handle( "std::vector<float>" )
|
192 |
jetMassLabel = ( "pfShyftTupleJets" + lepStr + postfix, "mass" )
|
193 |
jetSecvtxMassHandle = Handle( "std::vector<float>" )
|
194 |
jetSecvtxMassLabel = ( "pfShyftTupleJets" + lepStr + postfix, "secvtxMass" )
|
195 |
jetSSVHEHandle = Handle( "std::vector<float>" )
|
196 |
jetSSVHELabel = ( "pfShyftTupleJets" + lepStr + postfix, "ssvhe" )
|
197 |
jetFlavorHandle = Handle( "std::vector<float>" )
|
198 |
jetFlavorLabel = ( "pfShyftTupleJets" + lepStr + postfix, "flavor" )
|
199 |
|
200 |
muonPtHandle = Handle( "std::vector<float>" )
|
201 |
muonPtLabel = ( "pfShyftTupleMuons"+ postfix, "pt" )
|
202 |
muonEtaHandle = Handle( "std::vector<float>" )
|
203 |
muonEtaLabel = ( "pfShyftTupleMuons"+ postfix, "eta" )
|
204 |
muonPhiHandle = Handle( "std::vector<float>" )
|
205 |
muonPhiLabel = ( "pfShyftTupleMuons"+ postfix, "phi" )
|
206 |
muonNhIsoHandle = Handle( "std::vector<float>" )
|
207 |
muonNhIsoLabel = ( "pfShyftTupleMuons"+ postfix, "nhIso" )
|
208 |
muonChIsoHandle = Handle( "std::vector<float>" )
|
209 |
muonChIsoLabel = ( "pfShyftTupleMuons"+ postfix, "chIso" )
|
210 |
muonPhIsoHandle = Handle( "std::vector<float>" )
|
211 |
muonPhIsoLabel = ( "pfShyftTupleMuons"+ postfix, "phIso" )
|
212 |
muonPuIsoHandle = Handle( "std::vector<float>" )
|
213 |
muonPuIsoLabel = ( "pfShyftTupleMuons"+ postfix, "puIso" )
|
214 |
|
215 |
electronPtHandle = Handle( "std::vector<float>" )
|
216 |
electronPtLabel = ( "pfShyftTupleElectrons"+ postfix, "pt" )
|
217 |
electronEtaHandle = Handle( "std::vector<float>" )
|
218 |
electronEtaLabel = ( "pfShyftTupleElectrons"+ postfix, "eta" )
|
219 |
electronPhiHandle = Handle( "std::vector<float>" )
|
220 |
electronPhiLabel = ( "pfShyftTupleElectrons"+ postfix, "phi" )
|
221 |
electronNhIsoHandle = Handle( "std::vector<float>" )
|
222 |
electronNhIsoLabel = ( "pfShyftTupleElectrons"+ postfix, "nhIso" )
|
223 |
electronChIsoHandle = Handle( "std::vector<float>" )
|
224 |
electronChIsoLabel = ( "pfShyftTupleElectrons"+ postfix, "chIso" )
|
225 |
electronPhIsoHandle = Handle( "std::vector<float>" )
|
226 |
electronPhIsoLabel = ( "pfShyftTupleElectrons"+ postfix, "phIso" )
|
227 |
electronPuIsoHandle = Handle( "std::vector<float>" )
|
228 |
electronPuIsoLabel = ( "pfShyftTupleElectrons"+ postfix, "puIso" )
|
229 |
|
230 |
|
231 |
metHandle = Handle( "std::vector<float>" )
|
232 |
metLabel = ("pfShyftTupleMET" + lepStr + postfix, "pt" )
|
233 |
metPhiHandle = Handle( "std::vector<float>" )
|
234 |
metPhiLabel = ("pfShyftTupleMET" + lepStr + postfix, "phi" )
|
235 |
|
236 |
|
237 |
# Keep some timing information
|
238 |
nEventsAnalyzed = 0
|
239 |
nEventsPassed4Jets = 0
|
240 |
nEventsPassed1Tag = 0
|
241 |
timer = ROOT.TStopwatch()
|
242 |
timer.Start()
|
243 |
|
244 |
pairs = []
|
245 |
|
246 |
# loop over events
|
247 |
count = 0
|
248 |
ntotal = events.size()
|
249 |
percentDone = 0.0
|
250 |
ipercentDone = 0
|
251 |
ipercentDoneLast = -1
|
252 |
print "Start looping"
|
253 |
for event in events:
|
254 |
nEventsAnalyzed += 1
|
255 |
ipercentDone = int(percentDone)
|
256 |
if ipercentDone != ipercentDoneLast :
|
257 |
ipercentDoneLast = ipercentDone
|
258 |
print 'Processing {0:10.0f}/{1:10.0f} : {2:5.0f}%'.format(
|
259 |
count, ntotal, ipercentDone )
|
260 |
count = count + 1
|
261 |
percentDone = float(count) / float(ntotal) * 100.0
|
262 |
|
263 |
|
264 |
################################################
|
265 |
# Retrieve the jet four-vector
|
266 |
# ------------------------------------
|
267 |
# The jet 4-vectors are large and hence
|
268 |
# take a long time to read out. If you don't
|
269 |
# need the other products (eta,phi,mass of jet)
|
270 |
# then don't read them out.
|
271 |
################################################
|
272 |
|
273 |
event.getByLabel( jetPtLabel, jetPtHandle )
|
274 |
if not jetPtHandle.isValid():
|
275 |
jetPts = None
|
276 |
else :
|
277 |
jetPts = jetPtHandle.product()
|
278 |
|
279 |
if jetPts is None :
|
280 |
continue
|
281 |
event.getByLabel( jetEtaLabel, jetEtaHandle )
|
282 |
jetEtas = jetEtaHandle.product()
|
283 |
event.getByLabel( jetPhiLabel, jetPhiHandle )
|
284 |
jetPhis = jetPhiHandle.product()
|
285 |
event.getByLabel( jetMassLabel, jetMassHandle )
|
286 |
jetMasses = jetMassHandle.product()
|
287 |
|
288 |
|
289 |
# Find the njet bin we're in
|
290 |
njets = -1
|
291 |
event.getByLabel( jetPtLabel, jetPtHandle )
|
292 |
jetPts = jetPtHandle.product()
|
293 |
njets = 0
|
294 |
for ijet in range( 0, len( jetPts ) ) :
|
295 |
if jetPts[ijet] > 30.0 :
|
296 |
njets += 1
|
297 |
|
298 |
# We're not interested in <=4 jets
|
299 |
if njets < minJets :
|
300 |
continue
|
301 |
nEventsPassed4Jets = nEventsPassed4Jets + 1
|
302 |
|
303 |
|
304 |
|
305 |
################################################
|
306 |
# Retrieve the jet vertex mass and plot the
|
307 |
# secondary vertex mass for tagged jets.
|
308 |
################################################
|
309 |
event.getByLabel (jetSSVHELabel, jetSSVHEHandle)
|
310 |
jetSSVHEs = jetSSVHEHandle.product()
|
311 |
|
312 |
# Now loop over the jets, and count tags
|
313 |
ntags = 0
|
314 |
for ijet in range(0,len(jetPts) ) :
|
315 |
jetPt = jetPts[ijet]
|
316 |
if jetPt < 30.0 :
|
317 |
continue
|
318 |
#jetEta = jetEtas[ijet]
|
319 |
#jetPhi = jetPhis[ijet]
|
320 |
#jetMass = jetMasses[ijet]
|
321 |
jetSSVHE = jetSSVHEs[ijet]
|
322 |
# plot secondary vertex mass for tagged jets
|
323 |
if jetSSVHE >= ssvheCut :
|
324 |
ntags = ntags + 1
|
325 |
if ntags > 0:
|
326 |
nEventsPassed1Tag = nEventsPassed1Tag + 1
|
327 |
pairs.append( [event.object().id().run(),
|
328 |
event.object().id().luminosityBlock(),
|
329 |
event.object().id().event(),
|
330 |
njets,
|
331 |
ntags] )
|
332 |
else :
|
333 |
continue
|
334 |
|
335 |
|
336 |
################################################
|
337 |
# Require exactly one lepton (e or mu)
|
338 |
# ------------------------------------
|
339 |
# Our ntuples have both muon and electron
|
340 |
# events, and hence we must select events
|
341 |
# based on one or the other type.
|
342 |
# To accomplish this we check the products
|
343 |
# for the type we're currently plotting
|
344 |
# (Mu or Ele), and check if the product is
|
345 |
# present.
|
346 |
################################################
|
347 |
muonPts = None
|
348 |
electronPts = None
|
349 |
muonEtas = None
|
350 |
muonPhis = None
|
351 |
if options.lepType == 0 :
|
352 |
event.getByLabel (muonPtLabel, muonPtHandle)
|
353 |
if not muonPtHandle.isValid():
|
354 |
muonPts = None
|
355 |
else :
|
356 |
muonPts = muonPtHandle.product()
|
357 |
event.getByLabel (muonEtaLabel, muonEtaHandle)
|
358 |
muonEtas = muonEtaHandle.product()
|
359 |
event.getByLabel( muonPhiLabel, muonPhiHandle )
|
360 |
muonPhis = muonPhiHandle.product()
|
361 |
|
362 |
elif options.lepType == 1 :
|
363 |
event.getByLabel (electronPtLabel, electronPtHandle)
|
364 |
if not electronPtHandle.isValid():
|
365 |
electronPts = None
|
366 |
else :
|
367 |
electronPts = electronPtHandle.product()
|
368 |
|
369 |
# If neither muons nor electrons are found, skip
|
370 |
if muonPts is None and electronPts is None :
|
371 |
continue
|
372 |
# If we are looking for muons but none are found, skip
|
373 |
if options.lepType == 0 and muonPts is None :
|
374 |
continue
|
375 |
# If we are looking for electrons but none are found, skip
|
376 |
if options.lepType == 1 and electronPts is None :
|
377 |
continue
|
378 |
|
379 |
# Now get the MET
|
380 |
event.getByLabel( metLabel, metHandle )
|
381 |
metRaw = metHandle.product()[0]
|
382 |
event.getByLabel( metPhiLabel, metPhiHandle )
|
383 |
metPhi = metPhiHandle.product()[0]
|
384 |
|
385 |
# Now get the PF isolation
|
386 |
lepIso = -1.0
|
387 |
if options.lepType == 0 and muonPts is not None :
|
388 |
events.getByLabel( muonNhIsoLabel, muonNhIsoHandle )
|
389 |
events.getByLabel( muonChIsoLabel, muonChIsoHandle )
|
390 |
events.getByLabel( muonPhIsoLabel, muonPhIsoHandle )
|
391 |
events.getByLabel( muonPuIsoLabel, muonPuIsoHandle )
|
392 |
nhIso = muonNhIsoHandle.product()[0]
|
393 |
chIso = muonChIsoHandle.product()[0]
|
394 |
phIso = muonPhIsoHandle.product()[0]
|
395 |
puIso = muonPuIsoHandle.product()[0]
|
396 |
lepIso = (chIso + max(0.0, nhIso + phIso - 0.5*puIso)) / muonPts[0]
|
397 |
if options.lepType == 1 and electronPts is not None :
|
398 |
events.getByLabel( electronNhIsoLabel, electronNhIsoHandle )
|
399 |
events.getByLabel( electronChIsoLabel, electronChIsoHandle )
|
400 |
events.getByLabel( electronPhIsoLabel, electronPhIsoHandle )
|
401 |
events.getByLabel( electronPuIsoLabel, electronPuIsoHandle )
|
402 |
nhIso = electronNhIsoHandle.product()[0]
|
403 |
chIso = electronChIsoHandle.product()[0]
|
404 |
phIso = electronPhIsoHandle.product()[0]
|
405 |
puIso = electronPuIsoHandle.product()[0]
|
406 |
lepIso = (chIso + max(0.0, nhIso + phIso - 0.5*puIso)) / electronPts[0]
|
407 |
|
408 |
|
409 |
# Make a plot of the MET versus ISO for normalization purposes
|
410 |
metVsIso.Fill( metRaw, lepIso )
|
411 |
|
412 |
# If the ISO is higher than our cut, skip, unless we want it inverted
|
413 |
if not options.invertPFIso :
|
414 |
if lepIso > isoMax :
|
415 |
continue
|
416 |
else :
|
417 |
if lepIso < isoMax :
|
418 |
continue
|
419 |
|
420 |
# Fill histograms which do not have MET cut
|
421 |
metHist.Fill(metRaw)
|
422 |
|
423 |
# Now compute transverse mass
|
424 |
muVec = ROOT.TLorentzVector()
|
425 |
muVec.SetPtEtaPhiM(muonPts[0],0,muonPhis[0],0)
|
426 |
metVec = ROOT.TLorentzVector()
|
427 |
metVec.SetPtEtaPhiM(metRaw,0,metPhi,0)
|
428 |
massVec = muVec + metVec
|
429 |
transMHist.Fill( massVec.M())
|
430 |
|
431 |
# If the MET is lower than our cut, skip, unless we want it inverted
|
432 |
if options.invertMET :
|
433 |
if metRaw > metMin :
|
434 |
continue
|
435 |
elif options.relaxMET :
|
436 |
if metRaw < 0 :
|
437 |
continue
|
438 |
else :
|
439 |
if metRaw < metMin :
|
440 |
continue
|
441 |
|
442 |
event.getByLabel (jetSecvtxMassLabel, jetSecvtxMassHandle)
|
443 |
jetSecvtxMasses = jetSecvtxMassHandle.product()
|
444 |
if options.doMC :
|
445 |
event.getByLabel( jetFlavorLabel, jetFlavorHandle )
|
446 |
jetFlavors = jetFlavorHandle.product()
|
447 |
# Now loop over the jets, and store the secondary vertex mass.
|
448 |
ntags = 0
|
449 |
ht_jets = 0
|
450 |
jets_p4 = []
|
451 |
for ijet in range(0,len(jetPts) ) :
|
452 |
jetPt = jetPts[ijet]
|
453 |
if jetPt < 30.0 :
|
454 |
continue
|
455 |
ijetP4 = ROOT.TLorentzVector()
|
456 |
ijetP4.SetPtEtaPhiM( jetPts[ijet], jetEtas[ijet], jetPhis[ijet], jetMasses[ijet] )
|
457 |
jets_p4.append( ijetP4 )
|
458 |
jetSSVHE = jetSSVHEs[ijet]
|
459 |
jetSecvtxMass = jetSecvtxMasses[ijet]
|
460 |
jetPtHist.Fill( jetPt )
|
461 |
ht_jets += jetPt
|
462 |
# plot secondary vertex mass for tagged jets
|
463 |
if jetSSVHE >= ssvheCut :
|
464 |
ntags = ntags + 1
|
465 |
secvtxMassHist.Fill( jetSecvtxMass )
|
466 |
if options.doMC :
|
467 |
if abs(jetFlavors[ijet]) == 5 :
|
468 |
secvtxMassHistB.Fill( jetSecvtxMass )
|
469 |
elif abs(jetFlavors[ijet]) == 4 :
|
470 |
secvtxMassHistC.Fill( jetSecvtxMass )
|
471 |
else :
|
472 |
secvtxMassHistL.Fill( jetSecvtxMass )
|
473 |
nBTagHist.Fill( ntags )
|
474 |
|
475 |
# Now compute m3
|
476 |
maxPt = -1.0
|
477 |
m3 = -1.0
|
478 |
for ijet in range(0, len(jets_p4) ) :
|
479 |
for jjet in range(ijet + 1, len(jets_p4) ) :
|
480 |
for kjet in range(jjet + 1, len(jets_p4) ) :
|
481 |
sumP4 = jets_p4[ijet] + jets_p4[jjet] + jets_p4[kjet]
|
482 |
if sumP4.Perp() > maxPt :
|
483 |
maxPt = sumP4.Perp()
|
484 |
m3 = sumP4.M()
|
485 |
if maxPt > 0.0 :
|
486 |
m3Hist.Fill( m3 )
|
487 |
|
488 |
# fill remaining histograms
|
489 |
nJetHist.Fill(njets)
|
490 |
|
491 |
htHist.Fill(ht_jets)
|
492 |
|
493 |
for imu in range( 0, len( muonPts ) ) :
|
494 |
muPtHist.Fill(muonPts[imu])
|
495 |
for imu in range( 0, len( muonEtas) ) :
|
496 |
muEtaHist.Fill(muonEtas[imu])
|
497 |
|
498 |
# Stop our timer
|
499 |
timer.Stop()
|
500 |
|
501 |
# Print out our timing information
|
502 |
rtime = timer.RealTime(); # Real time (or "wall time")
|
503 |
ctime = timer.CpuTime(); # CPU time
|
504 |
print("Analyzed events: {0:6d}").format(nEventsAnalyzed)
|
505 |
print(">=4 jet events : {0:6d}").format(nEventsPassed4Jets)
|
506 |
print(">=1 tag events : {0:6d}").format(nEventsPassed1Tag)
|
507 |
print("RealTime={0:6.2f} seconds, CpuTime={1:6.2f} seconds").format(rtime,ctime)
|
508 |
print("{0:4.2f} events / RealTime second .").format( nEventsAnalyzed/rtime)
|
509 |
print("{0:4.2f} events / CpuTime second .").format( nEventsAnalyzed/ctime)
|
510 |
|
511 |
|
512 |
|
513 |
f.cd()
|
514 |
f.Write()
|
515 |
f.Close()
|