ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/TIBTIDNotes/TIBTIDIntNote/ModBiasAndVDepl.tex
Revision: 1.1
Committed: Tue Jan 20 11:13:35 2009 UTC (16 years, 3 months ago) by sguazz
Content type: application/x-tex
Branch: MAIN
Log Message:
First commit of TIB TID Integration Note

File Contents

# User Rev Content
1 sguazz 1.1 \section{Modules biasing and depletion voltages}
2     \label{sec:biasandvdepl}
3    
4     The LV and HV powering of modules is organized to reduce the number of
5     power cables and of power supply modules on the far-end. Several
6     modules are powered in parallel by the same power supply module, and
7     the modules that share the same power supply are said to belong to the
8     same {\em power group}. The actual layout of the power group depends
9     on the layer for TIB and on the ring for TID. In TIB L1 and L2 the
10     power group corresponds to all the modules connected to one mother
11     cable (6 modules, 36 APVs); in TIB L3 and L4 the power group
12     corresponds to the modules connected to three or four adjacent mother
13     cables (9 or 12 modules, 36 or 48 APVs, respectively). As far as TID is
14     concerned, for TID R1 and R2 the power group matches the mother cable
15     (6 modules, 36 APVs); for R3 the power group
16     corresponds to two mother cables (10 modules, 40 APVs).
17    
18     Each single power supply modules has two independent HV channels. In
19     the power groups of double-sided layer/rings, i.e., TIB L1 and L2 and
20     TID R1 and R2, one channel feeds $r\phi$ modules and the other stereo
21     modules. In the power groups of single-sided layer/rings, the mother
22     cables belonging to the power group are shared between the two
23     channels, i.e., in any case the modules on the same mother cable are
24     HV powered by the same HV channel.
25    
26     The bias to be applied to a given channel is roughly $V_{\rm depl}^{\rm
27     max}+{\cal O}(100{\rm V})$,
28     where $V_{\rm depl}^{\rm max}$ is the maximum depletion voltage of the
29     sensors biased in parallel within that channel. Since depletion
30     voltage distributions are quite broad, care was taken to avoid for the
31     other sensors with $V_{\rm depl}\leq V_{\rm depl}^{\rm max}$ to be excessively
32     over depleted. During the integration the modules were organized in
33     order to have the depletion voltage as much uniform as possible within
34     the power group and in particular within the same HV channel.
35    
36     The distribution of $V_{\rm depl}-V_{\rm depl}^{\rm max}$ for all the
37     TIB/TID modules is shown in Figure~\ref{fig:VdeplUni}. For each
38     module entry in the histogram, $V_{\rm depl}^{\rm max}$ is the maximum
39     depletion voltage among the modules biased in parallel.
40     \begin{figure}[h]
41     \begin{center}
42     \includegraphics[width=0.6\textwidth]{Figs/forIntNote_uniformity.pdf}
43     \caption{Distribution of $V_{\rm depl}-V_{\rm depl}^{\rm max}$ for all the
44     TIB/TID modules where $V_{\rm depl}^{\rm max}$ is the maximum
45     depletion voltage among the modules biased in parallel.}
46     \label{fig:VdeplUni}
47     %\vskip -5mm
48     \end{center}
49     \end{figure}
50     The difference, on average, is $\sim\!18{\rm \, V}$. $69\%$ ($78\%$) of modules
51     will be biased with $<\!20{\rm \, V}$ ($<\!30{\rm \, V}$) of extra
52     over depletion. Only for $0.7\%$ of TIB/TID modules the extra
53     over-depletion is $>\!100{\rm \, V}$.
54    
55    
56     The modules in the internal part of the TIB L1 and the TID R1 are the
57     most subjected to the radiation with an expected fluence of
58     $15.9\cdot10^{13}\,(1\!-\!{\rm MeV\, n\, eq})\cdot{\rm cm}^{-2}$ and $17.4\cdot10^{13}\,(1\!-\!{\rm MeV\, n\, eq})\cdot{\rm cm}^{-2}$, respectively, over a $\sim\!10{\rm \, y}$ LHC
59     lifetime~\cite{fluencemaps}.
60     \begin{figure}[b]
61     \begin{center}
62     \includegraphics[width=0.6\textwidth]{Figs/flu_tib_note.pdf}
63     \caption{TIB fluence map.}
64     \label{fig:TIBfluence}
65     %\vskip -5mm
66     \end{center}
67     \end{figure}
68     \begin{figure}[t]
69     \begin{center}
70     \includegraphics[width=0.6\textwidth]{Figs/flu_tid_note.pdf}
71     \caption{TID fluence map.}
72     \label{fig:TIBfluence}
73     %\vskip -5mm
74     \end{center}
75     \end{figure}
76    
77    
78     Following the method described in~\cite{migliore}, the depletion
79     voltage evolution during the LHC lifetime can be estimated. The
80     maximum depletion voltage to be expected as a
81     function of the initial depletion voltage is shown in
82     Figure~\ref{fig:vmaxestimation} for the above discussed worst cases.
83    
84     At a given fluence the evolution depends on the operating temperature
85     during the data taking $T_{\rm DT}$
86     and the number of times the tracker will be accessed for
87     maintenance. The standard scenario consists of $T_{\rm DT}=-10^\circ
88     {\rm C}$ and three intervention during the first, the third and the
89     fifth winter shutdowns. Besides the standard scenario, other more
90     conservative scenarios have been taken into account~\cite{migliore}:
91     \begin{itemize}
92     \item $T_{\rm DT}=-20^\circ {\rm C}$ and only one intervention during
93     the first winter shutdown (in this scenario there is very limited
94     beneficial annealing);
95     \item 100\% donor removal (standard value $70\%$);
96     \item neutron flux $100\%$ larger and
97     \item proton flux $30\%$ larger, according to the systematic
98     uncertainties to be intended on the particle flux estimation.
99     \end{itemize}
100     Moreover the estimation of the depletion voltage evolution itself has
101     $50{\rm \, V}$ of uncertainty.
102    
103     \begin{figure}[b]
104     \begin{center}
105     \includegraphics[width=0.47\textwidth]{Figs/vdepmax_tib_l1_note.pdf}
106     \hskip 0.5mm
107     \includegraphics[width=0.47\textwidth]{Figs/vdepmax_tid_r1_note.pdf}
108     \caption{The expected maximum depletion voltage over the LHC
109     lifetime as a function of the initial depletion voltage for TIB L1
110     internal (left panel) and TID R1 (right panel) for various scenarios
111     as discussed in the text.}
112     \label{fig:vmaxestimation}
113     %\vskip -5mm
114     \end{center}
115     \end{figure}
116    
117     The nominal module bias is $400{\rm \, V}$, although modules have been
118     tested up to $450{\rm \, V}$ and power supply HV voltage channels can
119     provide up to $600{\rm \, V}$. The resulting depletion voltage
120     distribution for each layer, shown in Figure~\ref{fig:ModSenVdepl},
121     comply with the radiation tolerance requirements due to the expected
122     fluence in each module position discussed above.
123    
124     \begin{figure}[t]
125     \begin{center}
126     \includegraphics[width=0.32\textwidth]{Figs/TIB_L1_int.pdf}
127     \hskip 0.5mm
128     \includegraphics[width=0.32\textwidth]{Figs/TIB_L1_ext.pdf}
129     \hskip 0.5mm
130     \includegraphics[width=0.32\textwidth]{Figs/TIB_L2.pdf}
131     \\
132     %\hskip 0.5mm
133     \includegraphics[width=0.32\textwidth]{Figs/TIB_L3.pdf}
134     \hskip 0.5mm
135     \includegraphics[width=0.32\textwidth]{Figs/TIB_L4.pdf}
136     \\
137     %\hskip 0.5mm
138     \includegraphics[width=0.32\textwidth]{Figs/TID_R1.pdf}
139     \hskip 0.5mm
140     \includegraphics[width=0.32\textwidth]{Figs/TID_R2.pdf}
141     \hskip 0.5mm
142     \includegraphics[width=0.32\textwidth]{Figs/TID_R3.pdf}
143     %\hskip 0.5mm
144     \caption{Module sensors depletion voltage distributions.}
145     \label{fig:ModSenVdepl}
146     %\vskip -5mm
147     \end{center}
148     \end{figure}
149