ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/VHbb/python/HistoMaker.py
Revision: 1.4
Committed: Thu Oct 4 13:02:23 2012 UTC (12 years, 7 months ago) by nmohr
Content type: text/x-python
Branch: MAIN
Changes since 1.3: +10 -0 lines
Log Message:
Plotting style

File Contents

# Content
1 from samplesclass import sample
2 from printcolor import printc
3 import pickle
4 import ROOT
5 from ROOT import TFile, TTree
6 import ROOT
7 from array import array
8 from BetterConfigParser import BetterConfigParser
9 import sys
10
11 class HistoMaker:
12 def __init__(self, path, config, region, optionsList,rescale=1,which_weightF='weightF'):
13 self.path = path
14 self.config = config
15 self.optionsList = optionsList
16 self.rescale = rescale
17 self.which_weightF=which_weightF
18 self.region = region
19 self.lumi=0.
20
21 def getScale(self,job,subsample=-1):
22 anaTag=self.config.get('Analysis','tag')
23 input = TFile.Open(self.path+'/'+job.getpath())
24 CountWithPU = input.Get("CountWithPU")
25 CountWithPU2011B = input.Get("CountWithPU2011B")
26 #print lumi*xsecs[i]/hist.GetBinContent(1)
27 if subsample>-1:
28 xsec=float(job.xsec[subsample])
29 sf=float(job.sf[subsample])
30 else:
31 xsec=float(job.xsec)
32 sf=float(job.sf)
33 theScale = 1.
34 if anaTag == '7TeV':
35 theScale = float(self.lumi)*xsec*sf/(0.46502*CountWithPU.GetBinContent(1)+0.53498*CountWithPU2011B.GetBinContent(1))*self.rescale/float(job.split)
36 elif anaTag == '8TeV':
37 theScale = float(self.lumi)*xsec*sf/(CountWithPU.GetBinContent(1))*self.rescale/float(job.split)
38 return theScale
39
40
41 def getHistoFromTree(self,job,subsample=-1):
42 if self.lumi == 0: raise Exception("You're trying to plot with no lumi")
43
44 hTreeList=[]
45 groupList=[]
46
47
48 plot_path = self.config.get('Directories','plotpath')
49 addOverFlow=eval(self.config.get('Plot_general','addOverFlow'))
50
51 # define treeCut
52 if job.type != 'DATA':
53 if type(self.region)==str:
54 cutcut=self.config.get('Cuts',self.region)
55 elif type(self.region)==list:
56 #replace vars with other vars in the cutstring (used in DC writer)
57 cutcut=self.config.get('Cuts',self.region[0])
58 cutcut=cutcut.replace(self.region[1],self.region[2])
59 #print cutcut
60 if subsample>-1:
61 treeCut='%s & %s & EventForTraining == 0'%(cutcut,job.subcuts[subsample])
62 else:
63 treeCut='%s & EventForTraining == 0'%(cutcut)
64 elif job.type == 'DATA':
65 cutcut=self.config.get('Cuts',self.region)
66 treeCut='%s'%(cutcut)
67
68 # get and skim the Trees
69 output=TFile.Open(plot_path+'/tmp_plotCache_%s_%s.root'%(self.region,job.identifier),'recreate')
70 input = TFile.Open(self.path+'/'+job.getpath(),'read')
71 Tree = input.Get(job.tree)
72 output.cd()
73 CuttedTree=Tree.CopyTree(treeCut)
74
75 # get all Histos at once
76 weightF=self.config.get('Weights',self.which_weightF)
77 for options in self.optionsList:
78 if subsample>-1:
79 name=job.subnames[subsample]
80 group=job.group[subsample]
81 else:
82 name=job.name
83 group=job.group
84 treeVar=options[0]
85 name=options[1]
86 nBins=int(options[3])
87 xMin=float(options[4])
88 xMax=float(options[5])
89
90 if job.type != 'DATA':
91 if CuttedTree.GetEntries():
92 output.cd()
93 CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax), weightF, "goff,e")
94 full=True
95 else:
96 full=False
97 elif job.type == 'DATA':
98 if options[11] == 'blind':
99 output.cd()
100 CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),treeVar+'<0', "goff,e")
101 else:
102 output.cd()
103 CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),'1', "goff,e")
104 full = True
105 if full:
106 hTree = ROOT.gDirectory.Get(name)
107 else:
108 output.cd()
109 hTree = ROOT.TH1F('%s'%name,'%s'%name,nBins,xMin,xMax)
110 hTree.Sumw2()
111 if job.type != 'DATA':
112 ScaleFactor = self.getScale(job,subsample)
113 if ScaleFactor != 0:
114 hTree.Scale(ScaleFactor)
115 #print '\t-->import %s\t Integral: %s'%(job.name,hTree.Integral())
116 if addOverFlow:
117 uFlow = hTree.GetBinContent(0)+hTree.GetBinContent(1)
118 oFlow = hTree.GetBinContent(hTree.GetNbinsX()+1)+hTree.GetBinContent(hTree.GetNbinsX())
119 uFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(0),2)+ROOT.TMath.Power(hTree.GetBinError(1),2))
120 oFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()),2)+ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()+1),2))
121 hTree.SetBinContent(1,uFlow)
122 hTree.SetBinContent(hTree.GetNbinsX(),oFlow)
123 hTree.SetBinError(1,uFlowErr)
124 hTree.SetBinError(hTree.GetNbinsX(),oFlowErr)
125 hTree.SetDirectory(0)
126 input.Close()
127 hTreeList.append(hTree)
128 groupList.append(group)
129
130 return hTreeList, groupList
131
132
133 ######################
134 def orderandadd(histos,typs,setup):
135 #ORDER AND ADD TOGETHER
136 ordnung=[]
137 ordnungtyp=[]
138 num=[0]*len(setup)
139 for i in range(0,len(setup)):
140 for j in range(0,len(histos)):
141 if typs[j] in setup[i]:
142 num[i]+=1
143 ordnung.append(histos[j])
144 ordnungtyp.append(typs[j])
145 del histos
146 del typs
147 histos=ordnung
148 typs=ordnungtyp
149 print typs
150 for k in range(0,len(num)):
151 for m in range(0,num[k]):
152 if m > 0:
153 #add
154 histos[k].Add(histos[k+1],1)
155 printc('magenta','','\t--> added %s to %s'%(typs[k],typs[k+1]))
156 del histos[k+1]
157 del typs[k+1]
158 del histos[len(setup):]
159 del typs[len(setup):]
160 return histos, typs