ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/VHbb/python/evaluateMVA.py
(Generate patch)

Comparing UserCode/VHbb/python/evaluateMVA.py (file contents):
Revision 1.7 by nmohr, Tue Jun 19 22:55:47 2012 UTC vs.
Revision 1.21 by peller, Wed Jan 16 16:22:46 2013 UTC

# Line 2 | Line 2
2   import sys
3   import os
4   import ROOT
5 from ROOT import TFile
5   from array import array
6   from math import sqrt
7   from copy import copy
8   #suppres the EvalInstace conversion warning bug
9   import warnings
10   warnings.filterwarnings( action='ignore', category=RuntimeWarning, message='creating converter.*' )
11 < from BetterConfigParser import BetterConfigParser
13 < from samplesclass import sample
14 < from mvainfos import mvainfo
11 > from optparse import OptionParser
12   import pickle
13 < from progbar import progbar
17 < from printcolor import printc
13 > from myutils import BetterConfigParser, progbar, mvainfo, printc, parse_info
14  
19 #CONFIGURE
15  
16 + #CONFIGURE
17 + ROOT.gROOT.SetBatch(True)
18 + print 'hello'
19   #load config
20 + #os.mkdir(path+'/sys')
21 + argv = sys.argv
22 + parser = OptionParser()
23 + parser.add_option("-U", "--update", dest="update", default=0,
24 +                      help="update infofile")
25 + parser.add_option("-D", "--discr", dest="discr", default="",
26 +                      help="discriminators to be added")
27 + #parser.add_option("-I", "--inpath", dest="inpath", default="",
28 + #                      help="path to samples")
29 + #parser.add_option("-O", "--outpath", dest="outpath", default="",
30 + #                      help="path where to store output samples")
31 + parser.add_option("-S", "--samples", dest="names", default="",
32 +                      help="samples you want to run on")
33 + parser.add_option("-C", "--config", dest="config", default=[], action="append",
34 +                      help="configuration file")
35 + (opts, args) = parser.parse_args(argv)
36 +
37 + #from samplesclass import sample
38 + #from mvainfos import mvainfo
39 + #from progbar import progbar
40 + #from printcolor import printc
41 +
42 +
43 + if opts.config =="":
44 +        opts.config = "config"
45   config = BetterConfigParser()
46 < config.read('./config')
46 > #config.read('./config7TeV_ZZ')
47 > config.read(opts.config)
48 > anaTag = config.get("Analysis","tag")
49  
50   #get locations:
51   Wdir=config.get('Directories','Wdir')
52 <
28 < MVAdir=config.get('Directories','MVAdir')
52 > samplesinfo=config.get('Directories','samplesinfo')
53  
54   #systematics
31 systematics=config.get('systematics','systematics')
32 systematics=systematics.split(' ')
55  
34 #TreeVar Array
35 #MVA_Vars={}
36 #for systematic in systematics:
37 #    MVA_Vars[systematic]=config.get('treeVars',systematic)
38 #    MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
56  
57 < ######################
58 < #Evaluate multi: Must Have same treeVars!!!
57 > INpath = config.get('Directories','MVAin')
58 > OUTpath = config.get('Directories','MVAout')
59  
60 < Apath=sys.argv[1]
44 < arglist=sys.argv[2] #RTight_blavla,bsbsb
60 > info = parse_info(samplesinfo,INpath)
61  
62 < namelistIN=sys.argv[3]
62 > #infofile = open(samplesinfo,'r')
63 > #info = pickle.load(infofile)
64 > #infofile.close()
65 > arglist=opts.discr #RTight_blavla,bsbsb
66 >
67 > namelistIN=opts.names
68   namelist=namelistIN.split(',')
69  
70 < doinfo=bool(int(sys.argv[4]))
70 > #doinfo=bool(int(opts.update))
71  
72   MVAlist=arglist.split(',')
73  
74 +
75   #CONFIG
76   #factory
77   factoryname=config.get('factory','factoryname')
78 +
79 + #load the namespace
80 + VHbbNameSpace=config.get('VHbbNameSpace','library')
81 + ROOT.gSystem.Load(VHbbNameSpace)
82 +
83   #MVA
57 #MVAnames=[]
58 #for MVA in MVAlist:
59 #    print MVA
60 #    MVAnames.append(config.get(MVA,'MVAname'))
61 #print Wdir+'/weights/'+factoryname+'_'+MVAname+'.info'
62 #MVAinfofiles=[]
84   MVAinfos=[]
85 + MVAdir=config.get('Directories','vhbbpath')
86   for MVAname in MVAlist:
87 <    MVAinfofile = open(Wdir+'/weights/'+factoryname+'_'+MVAname+'.info','r')
87 >    MVAinfofile = open(MVAdir+'/data/'+factoryname+'_'+MVAname+'.info','r')
88      MVAinfos.append(pickle.load(MVAinfofile))
89      MVAinfofile.close()
90      
69 treeVarSet=MVAinfos[0].varset
70 #variables
71 #TreeVar Array
72 MVA_Vars={}
73 for systematic in systematics:
74    MVA_Vars[systematic]=config.get(treeVarSet,systematic)
75    MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
76 #Spectators:
77 #spectators=config.get(treeVarSet,'spectators')
78 #spectators=spectators.split(' ')
79 #progbar quatsch
91   longe=40
92   #Workdir
93   workdir=ROOT.gDirectory.GetPath()
83 #os.mkdir(Apath+'/MVAout')
94  
85 #Book TMVA readers: MVAlist=["MMCC_bla","CC5050_bla"]
86 readers=[]
87 for MVA in MVAlist:
88    readers.append(ROOT.TMVA.Reader("!Color:!Silent"))
89
90 #define variables and specatators
91 MVA_var_buffer = []
92 MVA_var_buffer4 = []
93 for i in range(len( MVA_Vars['Nominal'])):
94    MVA_var_buffer.append(array( 'f', [ 0 ] ))
95    for reader in readers:
96        reader.AddVariable( MVA_Vars['Nominal'][i],MVA_var_buffer[i])
97 #MVA_spectator_buffer = []
98 #for i in range(len(spectators)):
99 #    MVA_spectator_buffer.append(array( 'f', [ 0 ] ))
100 #    for reader in readers:
101 #        reader.AddSpectator(spectators[i],MVA_spectator_buffer[i])
102 #Load raeder
103 for i in range(0,len(readers)):
104    readers[i].BookMVA(MVAinfos[i].MVAname,MVAinfos[i].getweightfile())
105 #--> Now the MVA is booked
95  
96   #Apply samples
97 < infofile = open(Apath+'/samples.info','r')
98 < Ainfo = pickle.load(infofile)
99 < infofile.close()
97 > #infofile = open(samplesinfo,'r')
98 > #Ainfo = pickle.load(infofile)
99 > #infofile.close()
100 >
101 >
102 > class MvaEvaluater:
103 >    def __init__(self, config, MVAinfo):
104 >        self.varset = MVAinfo.varset
105 >        #Define reader
106 >        self.reader = ROOT.TMVA.Reader("!Color:!Silent")
107 >        MVAdir=config.get('Directories','vhbbpath')
108 >        self.systematics=config.get('systematics','systematics').split(' ')
109 >        self.MVA_Vars={}
110 >        self.MVAname = MVAinfo.MVAname
111 >        for systematic in self.systematics:
112 >            self.MVA_Vars[systematic]=config.get(self.varset,systematic)
113 >            self.MVA_Vars[systematic]=self.MVA_Vars[systematic].split(' ')
114 >        #define variables and specatators
115 >        self.MVA_var_buffer = []
116 >        for i in range(len( self.MVA_Vars['Nominal'])):
117 >            self.MVA_var_buffer.append(array( 'f', [ 0 ] ))
118 >            self.reader.AddVariable( self.MVA_Vars['Nominal'][i],self.MVA_var_buffer[i])
119 >        self.reader.BookMVA(MVAinfo.MVAname,MVAdir+'/data/'+MVAinfo.getweightfile())
120 >        #--> Now the MVA is booked
121 >
122 >    def setBranches(self,tree,job):
123 >        #Set formulas for all vars
124 >        self.MVA_formulas={}
125 >        for systematic in self.systematics:
126 >            if job.type == 'DATA' and not systematic == 'Nominal': continue
127 >            self.MVA_formulas[systematic]=[]
128 >            for j in range(len( self.MVA_Vars['Nominal'])):
129 >                self.MVA_formulas[systematic].append(ROOT.TTreeFormula("MVA_formula%s_%s"%(j,systematic),self.MVA_Vars[systematic][j],tree))
130 >
131 >    def evaluate(self,MVAbranches,job):
132 >        #Evaluate all vars and fill the branches
133 >        for systematic in self.systematics:
134 >            for j in range(len( self.MVA_Vars['Nominal'])):
135 >                if job.type == 'DATA' and not systematic == 'Nominal': continue
136 >                self.MVA_var_buffer[j][0] = self.MVA_formulas[systematic][j].EvalInstance()                
137 >            MVAbranches[self.systematics.index(systematic)] = self.reader.EvaluateMVA(self.MVAname)
138 >
139 >
140 > theMVAs = []
141 > for mva in MVAinfos:
142 >    theMVAs.append(MvaEvaluater(config,mva))
143  
112 #eval
113 for job in Ainfo:
144  
145 <    if job.name in namelist:
146 <        #get trees:
147 <        input = TFile.Open(job.getpath(),'read')
148 <        outfile = TFile.Open(job.path+'/'+MVAdir+job.prefix+job.identifier+'.root','recreate')
149 <        input.cd()
150 <        obj = ROOT.TObject
151 <        for key in ROOT.gDirectory.GetListOfKeys():
145 > #eval
146 > for job in info:
147 >    if eval(job.active):
148 >        if job.name in namelist:
149 >            #get trees:
150 >            print INpath+'/'+job.prefix+job.identifier+'.root'
151 >            input = ROOT.TFile.Open(INpath+'/'+job.prefix+job.identifier+'.root','read')
152 >            print OUTpath+'/'+job.prefix+job.identifier+'.root'
153 >            outfile = ROOT.TFile.Open(OUTpath+'/'+job.prefix+job.identifier+'.root','recreate')
154              input.cd()
155 <            obj = key.ReadObj()
156 <            #print obj.GetName()
157 <            if obj.GetName() == job.tree:
158 <                continue
155 >            obj = ROOT.TObject
156 >            for key in ROOT.gDirectory.GetListOfKeys():
157 >                input.cd()
158 >                obj = key.ReadObj()
159 >                #print obj.GetName()
160 >                if obj.GetName() == job.tree:
161 >                    continue
162 >                outfile.cd()
163 >                #print key.GetName()
164 >                obj.Write(key.GetName())
165 >            tree = input.Get(job.tree)
166 >            nEntries = tree.GetEntries()
167              outfile.cd()
168 <            #print key.GetName()
169 <            obj.Write(key.GetName())
170 <        tree = input.Get(job.tree)
171 <        nEntries = tree.GetEntries()
172 <        outfile.cd()
173 <        newtree = tree.CloneTree(0)
134 <
135 <        #MCs:
136 <        if job.type != 'DATA':
137 <            MVA_formulas={}
138 <            MVA_formulas4={}
139 <            for systematic in systematics:
140 <                #print '\t\t - ' + systematic
141 <                MVA_formulas[systematic]=[]
142 <                MVA_formulas4[systematic]=[]
143 <                #create TTreeFormulas
144 <                for j in range(len( MVA_Vars['Nominal'])):
145 <                    MVA_formulas[systematic].append(ROOT.TTreeFormula("MVA_formula%s_%s"%(j,systematic),MVA_Vars[systematic][j],tree))
146 <                    MVA_formulas4[systematic].append(ROOT.TTreeFormula("MVA_formula4%s_%s"%(j,systematic),MVA_Vars['Nominal'][j]+'+('+MVA_Vars[systematic][j]+'-'+MVA_Vars['Nominal'][j]+')*4',tree))#HERE change
168 >            newtree = tree.CloneTree(0)
169 >            
170 >
171 >            #Set branch adress for all vars
172 >            for i in range(0,len(theMVAs)):
173 >                theMVAs[i].setBranches(tree,job)
174              outfile.cd()
175              #Setup Branches
176              MVAbranches=[]
177 <            MVAbranches4=[]
178 <            for i in range(0,len(readers)):
179 <                MVAbranches.append(array('f',[0]*9))
180 <                MVAbranches4.append(array('f',[0]*9))
181 <                newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
182 <                newtree.Branch(MVAinfos[i].MVAname+'_4',MVAbranches4[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
177 >            for i in range(0,len(theMVAs)):
178 >                if job.type == 'Data':
179 >                    MVAbranches.append(array('f',[0]))
180 >                    newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal/F')
181 >                else:
182 >                    MVAbranches.append(array('f',[0]*11))
183 >                    newtree.Branch(theMVAs[i].MVAname,MVAbranches[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down:beff1_up:beff1_down/F')
184 >                MVA_formulas_Nominal = []
185              print '\n--> ' + job.name +':'
186              #progbar setup
187              if nEntries >= longe:
# Line 168 | Line 197 | for job in Ainfo:
197                      bar.move()
198                  #load entry
199                  tree.GetEntry(entry)
200 <                for systematic in systematics:
201 <                    for j in range(len( MVA_Vars['Nominal'])):
202 <                        MVA_var_buffer[j][0] = MVA_formulas[systematic][j].EvalInstance()
174 <                        
175 <                    for j in range(0,len(readers)):
176 <                        MVAbranches[j][systematics.index(systematic)] = readers[j].EvaluateMVA(MVAinfos[j].MVAname)
177 <                        
178 <                    for j in range(len( MVA_Vars['Nominal'])):
179 <                        MVA_var_buffer[j][0] = MVA_formulas4[systematic][j].EvalInstance()
180 <                        
181 <                    for j in range(0,len(readers)):
182 <                        MVAbranches4[j][systematics.index(systematic)] = readers[j].EvaluateMVA(MVAinfos[j].MVAname)
200 >                            
201 >                for i in range(0,len(theMVAs)):
202 >                    theMVAs[i].evaluate(MVAbranches[i],job)
203                  #Fill:
204                  newtree.Fill()
205              newtree.AutoSave()
206              outfile.Close()
207 <            
188 <        #DATA:
189 <        if job.type == 'DATA':
190 <            #MVA Formulas
191 <            MVA_formulas_Nominal = []
192 <            #create TTreeFormulas
193 <            for j in range(len( MVA_Vars['Nominal'])):
194 <                MVA_formulas_Nominal.append(ROOT.TTreeFormula("MVA_formula%s_Nominal"%j, MVA_Vars['Nominal'][j],tree))
195 <            outfile.cd()
196 <            MVAbranches=[]
197 <            for i in range(0,len(readers)):
198 <                MVAbranches.append(array('f',[0]))
199 <                newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal/F')
200 <                newtree.Branch(MVAinfos[i].MVAname+'_4',MVAbranches[i],'nominal/F')
201 <            #progbar          
202 <            print '\n--> ' + job.name +':'
203 <            if nEntries >= longe:
204 <                step=int(nEntries/longe)
205 <                long=longe
206 <            else:
207 <                long=nEntries
208 <                step = 1
209 <            bar=progbar(long)
210 <            #Fill event by event:
211 <            for entry in range(0,nEntries):
212 <                if entry % step == 0:
213 <                    bar.move()
214 <                #load entry
215 <                tree.GetEntry(entry)
216 <                #nominal:
217 <                for j in range(len( MVA_Vars['Nominal'])):
218 <                        MVA_var_buffer[j][0] = MVA_formulas_Nominal[j].EvalInstance()
219 <                        
220 <                for j in range(0,len(readers)):
221 <                    MVAbranches[j][0]= readers[j].EvaluateMVA(MVAinfos[j].MVAname)
222 <                newtree.Fill()
223 <            newtree.AutoSave()
224 <            outfile.Close()
225 <
207 >                
208   print '\n'
209  
210   #Update Info:
211 < if doinfo:
212 <    for job in Ainfo:        
213 <        for MVAinfo in MVAinfos:
214 <            job.addcomment('Added MVA %s'%MVAinfo.MVAname)
215 <        job.addpath(MVAdir)
216 <    infofile = open(Apath+MVAdir+'/samples.info','w')
217 <    pickle.dump(Ainfo,infofile)
218 <    infofile.close()
237 <
238 <
211 > #if doinfo:
212 > #    for job in Ainfo:        
213 > #        for MVAinfo in MVAinfos:
214 > #            job.addcomment('Added MVA %s'%MVAinfo.MVAname)
215 > #        job.addpath(MVAdir)
216 > #    infofile = open(samplesinfo,'w')
217 > #    pickle.dump(Ainfo,infofile)
218 > #    infofile.close()

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines