1 |
#!/usr/bin/env python
|
2 |
import sys
|
3 |
import os
|
4 |
import ROOT
|
5 |
from ROOT import TFile
|
6 |
from array import array
|
7 |
from math import sqrt
|
8 |
from copy import copy
|
9 |
#suppres the EvalInstace conversion warning bug
|
10 |
import warnings
|
11 |
warnings.filterwarnings( action='ignore', category=RuntimeWarning, message='creating converter.*' )
|
12 |
from optparse import OptionParser
|
13 |
from BetterConfigParser import BetterConfigParser
|
14 |
from samplesclass import sample
|
15 |
from mvainfos import mvainfo
|
16 |
import pickle
|
17 |
from progbar import progbar
|
18 |
from printcolor import printc
|
19 |
|
20 |
#CONFIGURE
|
21 |
|
22 |
#load config
|
23 |
#os.mkdir(path+'/sys')
|
24 |
argv = sys.argv
|
25 |
parser = OptionParser()
|
26 |
parser.add_option("-U", "--update", dest="update", default=0,
|
27 |
help="update infofile")
|
28 |
parser.add_option("-D", "--discr", dest="discr", default="",
|
29 |
help="discriminators to be added")
|
30 |
parser.add_option("-P", "--path", dest="path", default="",
|
31 |
help="path to samples")
|
32 |
parser.add_option("-S", "--samples", dest="names", default="",
|
33 |
help="samples you want to run on")
|
34 |
parser.add_option("-C", "--config", dest="config", default=[], action="append",
|
35 |
help="configuration file")
|
36 |
(opts, args) = parser.parse_args(argv)
|
37 |
if opts.config =="":
|
38 |
opts.config = "config"
|
39 |
config = BetterConfigParser()
|
40 |
#config.read('./config7TeV_ZZ')
|
41 |
config.read(opts.config)
|
42 |
anaTag = config.get("Analysis","tag")
|
43 |
|
44 |
#get locations:
|
45 |
Wdir=config.get('Directories','Wdir')
|
46 |
MVASubdir=config.get('Directories','MVAdir')
|
47 |
samplesinfo=config.get('Directories','samplesinfo')
|
48 |
|
49 |
#systematics
|
50 |
systematics=config.get('systematics','systematics')
|
51 |
systematics=systematics.split(' ')
|
52 |
|
53 |
#TreeVar Array
|
54 |
#MVA_Vars={}
|
55 |
#for systematic in systematics:
|
56 |
# MVA_Vars[systematic]=config.get('treeVars',systematic)
|
57 |
# MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
|
58 |
|
59 |
######################
|
60 |
#Evaluate multi: Must Have same treeVars!!!
|
61 |
|
62 |
Apath=opts.path
|
63 |
infofile = open(samplesinfo,'r')
|
64 |
info = pickle.load(infofile)
|
65 |
infofile.close()
|
66 |
arglist=opts.discr #RTight_blavla,bsbsb
|
67 |
|
68 |
namelistIN=opts.names
|
69 |
namelist=namelistIN.split(',')
|
70 |
|
71 |
doinfo=bool(int(opts.update))
|
72 |
|
73 |
MVAlist=arglist.split(',')
|
74 |
MVAdir=config.get('Directories','vhbbpath')
|
75 |
|
76 |
#CONFIG
|
77 |
#factory
|
78 |
factoryname=config.get('factory','factoryname')
|
79 |
#MVA
|
80 |
#MVAnames=[]
|
81 |
#for MVA in MVAlist:
|
82 |
# print MVA
|
83 |
# MVAnames.append(config.get(MVA,'MVAname'))
|
84 |
#print Wdir+'/weights/'+factoryname+'_'+MVAname+'.info'
|
85 |
#MVAinfofiles=[]
|
86 |
MVAinfos=[]
|
87 |
for MVAname in MVAlist:
|
88 |
MVAinfofile = open(MVAdir+'/data/'+factoryname+'_'+MVAname+'.info','r')
|
89 |
MVAinfos.append(pickle.load(MVAinfofile))
|
90 |
MVAinfofile.close()
|
91 |
|
92 |
treeVarSet=MVAinfos[0].varset
|
93 |
#variables
|
94 |
#TreeVar Array
|
95 |
MVA_Vars={}
|
96 |
for systematic in systematics:
|
97 |
MVA_Vars[systematic]=config.get(treeVarSet,systematic)
|
98 |
MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
|
99 |
#Spectators:
|
100 |
#spectators=config.get(treeVarSet,'spectators')
|
101 |
#spectators=spectators.split(' ')
|
102 |
#progbar quatsch
|
103 |
longe=40
|
104 |
#Workdir
|
105 |
workdir=ROOT.gDirectory.GetPath()
|
106 |
#os.mkdir(Apath+'/MVAout')
|
107 |
|
108 |
#Book TMVA readers: MVAlist=["MMCC_bla","CC5050_bla"]
|
109 |
readers=[]
|
110 |
for MVA in MVAlist:
|
111 |
readers.append(ROOT.TMVA.Reader("!Color:!Silent"))
|
112 |
|
113 |
#define variables and specatators
|
114 |
MVA_var_buffer = []
|
115 |
MVA_var_buffer4 = []
|
116 |
for i in range(len( MVA_Vars['Nominal'])):
|
117 |
MVA_var_buffer.append(array( 'f', [ 0 ] ))
|
118 |
for reader in readers:
|
119 |
reader.AddVariable( MVA_Vars['Nominal'][i],MVA_var_buffer[i])
|
120 |
#MVA_spectator_buffer = []
|
121 |
#for i in range(len(spectators)):
|
122 |
# MVA_spectator_buffer.append(array( 'f', [ 0 ] ))
|
123 |
# for reader in readers:
|
124 |
# reader.AddSpectator(spectators[i],MVA_spectator_buffer[i])
|
125 |
#Load raeder
|
126 |
for i in range(0,len(readers)):
|
127 |
readers[i].BookMVA(MVAinfos[i].MVAname,MVAdir+'/data/'+MVAinfos[i].getweightfile())
|
128 |
#--> Now the MVA is booked
|
129 |
|
130 |
#Apply samples
|
131 |
infofile = open(samplesinfo,'r')
|
132 |
Ainfo = pickle.load(infofile)
|
133 |
infofile.close()
|
134 |
|
135 |
#eval
|
136 |
for job in Ainfo:
|
137 |
if eval(job.active):
|
138 |
if job.name in namelist:
|
139 |
#get trees:
|
140 |
input = TFile.Open(Apath+'/'+job.getpath(),'read')
|
141 |
outfile = TFile.Open(Apath+'/'+MVASubdir+job.prefix+job.identifier+'.root','recreate')
|
142 |
input.cd()
|
143 |
obj = ROOT.TObject
|
144 |
for key in ROOT.gDirectory.GetListOfKeys():
|
145 |
input.cd()
|
146 |
obj = key.ReadObj()
|
147 |
#print obj.GetName()
|
148 |
if obj.GetName() == job.tree:
|
149 |
continue
|
150 |
outfile.cd()
|
151 |
#print key.GetName()
|
152 |
obj.Write(key.GetName())
|
153 |
tree = input.Get(job.tree)
|
154 |
nEntries = tree.GetEntries()
|
155 |
outfile.cd()
|
156 |
newtree = tree.CloneTree(0)
|
157 |
|
158 |
#MCs:
|
159 |
if job.type != 'DATA':
|
160 |
MVA_formulas={}
|
161 |
MVA_formulas4={}
|
162 |
for systematic in systematics:
|
163 |
#print '\t\t - ' + systematic
|
164 |
MVA_formulas[systematic]=[]
|
165 |
MVA_formulas4[systematic]=[]
|
166 |
#create TTreeFormulas
|
167 |
for j in range(len( MVA_Vars['Nominal'])):
|
168 |
MVA_formulas[systematic].append(ROOT.TTreeFormula("MVA_formula%s_%s"%(j,systematic),MVA_Vars[systematic][j],tree))
|
169 |
MVA_formulas4[systematic].append(ROOT.TTreeFormula("MVA_formula4%s_%s"%(j,systematic),MVA_Vars['Nominal'][j]+'+('+MVA_Vars[systematic][j]+'-'+MVA_Vars['Nominal'][j]+')*4',tree))#HERE change
|
170 |
outfile.cd()
|
171 |
#Setup Branches
|
172 |
MVAbranches=[]
|
173 |
MVAbranches4=[]
|
174 |
for i in range(0,len(readers)):
|
175 |
MVAbranches.append(array('f',[0]*9))
|
176 |
MVAbranches4.append(array('f',[0]*9))
|
177 |
newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
|
178 |
newtree.Branch(MVAinfos[i].MVAname+'_4',MVAbranches4[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
|
179 |
print '\n--> ' + job.name +':'
|
180 |
#progbar setup
|
181 |
if nEntries >= longe:
|
182 |
step=int(nEntries/longe)
|
183 |
long=longe
|
184 |
else:
|
185 |
long=nEntries
|
186 |
step = 1
|
187 |
bar=progbar(long)
|
188 |
#Fill event by event:
|
189 |
for entry in range(0,nEntries):
|
190 |
if entry % step == 0:
|
191 |
bar.move()
|
192 |
#load entry
|
193 |
tree.GetEntry(entry)
|
194 |
for systematic in systematics:
|
195 |
for j in range(len( MVA_Vars['Nominal'])):
|
196 |
MVA_var_buffer[j][0] = MVA_formulas[systematic][j].EvalInstance()
|
197 |
|
198 |
for j in range(0,len(readers)):
|
199 |
MVAbranches[j][systematics.index(systematic)] = readers[j].EvaluateMVA(MVAinfos[j].MVAname)
|
200 |
|
201 |
for j in range(len( MVA_Vars['Nominal'])):
|
202 |
MVA_var_buffer[j][0] = MVA_formulas4[systematic][j].EvalInstance()
|
203 |
|
204 |
for j in range(0,len(readers)):
|
205 |
MVAbranches4[j][systematics.index(systematic)] = readers[j].EvaluateMVA(MVAinfos[j].MVAname)
|
206 |
#Fill:
|
207 |
newtree.Fill()
|
208 |
newtree.AutoSave()
|
209 |
outfile.Close()
|
210 |
|
211 |
#DATA:
|
212 |
if job.type == 'DATA':
|
213 |
#MVA Formulas
|
214 |
MVA_formulas_Nominal = []
|
215 |
#create TTreeFormulas
|
216 |
for j in range(len( MVA_Vars['Nominal'])):
|
217 |
MVA_formulas_Nominal.append(ROOT.TTreeFormula("MVA_formula%s_Nominal"%j, MVA_Vars['Nominal'][j],tree))
|
218 |
outfile.cd()
|
219 |
MVAbranches=[]
|
220 |
for i in range(0,len(readers)):
|
221 |
MVAbranches.append(array('f',[0]))
|
222 |
newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal/F')
|
223 |
newtree.Branch(MVAinfos[i].MVAname+'_4',MVAbranches[i],'nominal/F')
|
224 |
#progbar
|
225 |
print '\n--> ' + job.name +':'
|
226 |
if nEntries >= longe:
|
227 |
step=int(nEntries/longe)
|
228 |
long=longe
|
229 |
else:
|
230 |
long=nEntries
|
231 |
step = 1
|
232 |
bar=progbar(long)
|
233 |
#Fill event by event:
|
234 |
for entry in range(0,nEntries):
|
235 |
if entry % step == 0:
|
236 |
bar.move()
|
237 |
#load entry
|
238 |
tree.GetEntry(entry)
|
239 |
#nominal:
|
240 |
for j in range(len( MVA_Vars['Nominal'])):
|
241 |
MVA_var_buffer[j][0] = MVA_formulas_Nominal[j].EvalInstance()
|
242 |
|
243 |
for j in range(0,len(readers)):
|
244 |
MVAbranches[j][0]= readers[j].EvaluateMVA(MVAinfos[j].MVAname)
|
245 |
newtree.Fill()
|
246 |
newtree.AutoSave()
|
247 |
outfile.Close()
|
248 |
|
249 |
print '\n'
|
250 |
|
251 |
#Update Info:
|
252 |
if doinfo:
|
253 |
for job in Ainfo:
|
254 |
for MVAinfo in MVAinfos:
|
255 |
job.addcomment('Added MVA %s'%MVAinfo.MVAname)
|
256 |
job.addpath(MVAdir)
|
257 |
infofile = open(samplesinfo,'w')
|
258 |
pickle.dump(Ainfo,infofile)
|
259 |
infofile.close()
|
260 |
|
261 |
|