1 |
– |
from samplesclass import sample |
2 |
– |
from printcolor import printc |
1 |
|
import pickle |
2 |
|
import ROOT |
3 |
|
from ROOT import TFile, TTree |
4 |
|
import ROOT |
5 |
|
from array import array |
8 |
– |
from BetterConfigParser import BetterConfigParser |
6 |
|
import sys |
7 |
< |
|
7 |
> |
from myutils import sample, printc |
8 |
|
|
9 |
|
def getScale(job,path,config,rescale,subsample=-1): |
10 |
|
anaTag=config.get('Analysis','tag') |
11 |
< |
input = TFile.Open(path+'/'+job.getpath()) |
12 |
< |
CountWithPU = input.Get("CountWithPU") |
13 |
< |
CountWithPU2011B = input.Get("CountWithPU2011B") |
11 |
> |
inputfile = TFile.Open(path+'/'+job.getpath()) |
12 |
> |
CountWithPU = inputfile.Get("CountWithPU") |
13 |
> |
CountWithPU2011B = inputfile.Get("CountWithPU2011B") |
14 |
|
#print lumi*xsecs[i]/hist.GetBinContent(1) |
15 |
|
|
16 |
|
if subsample>-1: |
17 |
< |
xsec=float(job.xsec[subsample]) |
17 |
> |
if type(job.xsec[subsample]) == str: xsec=float(eval(job.xsec[subsample])) |
18 |
> |
else: xsec=float(job.xsec[subsample]) |
19 |
|
sf=float(job.sf[subsample]) |
20 |
|
else: |
21 |
< |
xsec=float(job.xsec) |
21 |
> |
if type(job.xsec) == str: xsec=float(eval(job.xsec)) |
22 |
> |
else: xsec=float(job.xsec) |
23 |
|
sf=float(job.sf) |
24 |
|
|
25 |
|
|
28 |
|
theScale = float(job.lumi)*xsec*sf/(0.46502*CountWithPU.GetBinContent(1)+0.53498*CountWithPU2011B.GetBinContent(1))*rescale/float(job.split) |
29 |
|
elif anaTag == '8TeV': |
30 |
|
theScale = float(job.lumi)*xsec*sf/(CountWithPU.GetBinContent(1))*rescale/float(job.split) |
31 |
+ |
inputfile.Close() |
32 |
|
return theScale |
33 |
|
|
34 |
|
def getHistoFromTree(job,path,config,options,rescale=1,subsample=-1,which_weightF='weightF'): |
47 |
|
nBins=int(options[3]) |
48 |
|
xMin=float(options[4]) |
49 |
|
xMax=float(options[5]) |
50 |
+ |
#addOverFlow=eval(config.get('Plot_general','addOverFlow')) |
51 |
+ |
addOverFlow = False |
52 |
+ |
|
53 |
+ |
TrainFlag = eval(config.get('Analysis','TrainFlag')) |
54 |
+ |
if TrainFlag: traincut = " & EventForTraining == 0" |
55 |
+ |
if not TrainFlag: traincut="" |
56 |
|
|
57 |
|
if job.type != 'DATA': |
58 |
|
|
61 |
|
elif type(options[7])==list: |
62 |
|
cutcut=config.get('Cuts',options[7][0]) |
63 |
|
cutcut=cutcut.replace(options[7][1],options[7][2]) |
64 |
< |
print cutcut |
64 |
> |
#print cutcut |
65 |
|
if subsample>-1: |
66 |
< |
treeCut='%s & %s & EventForTraining == 0'%(cutcut,job.subcuts[subsample]) |
66 |
> |
treeCut='%s & %s%s'%(cutcut,job.subcuts[subsample],traincut) |
67 |
|
else: |
68 |
< |
treeCut='%s & EventForTraining == 0'%(cutcut) |
68 |
> |
treeCut='%s%s'%(cutcut,traincut) |
69 |
|
|
70 |
|
elif job.type == 'DATA': |
71 |
|
cutcut=config.get('Cuts',options[8]) |
112 |
|
ScaleFactor = getScale(job,path,config,rescale,subsample) |
113 |
|
if ScaleFactor != 0: |
114 |
|
hTree.Scale(ScaleFactor) |
115 |
+ |
|
116 |
+ |
if addOverFlow: |
117 |
+ |
print 'Adding overflow' |
118 |
+ |
uFlow = hTree.GetBinContent(0)+hTree.GetBinContent(1) |
119 |
+ |
oFlow = hTree.GetBinContent(hTree.GetNbinsX()+1)+hTree.GetBinContent(hTree.GetNbinsX()) |
120 |
+ |
uFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(0),2)+ROOT.TMath.Power(hTree.GetBinError(1),2)) |
121 |
+ |
oFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()),2)+ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()+1),2)) |
122 |
+ |
hTree.SetBinContent(1,uFlow) |
123 |
+ |
hTree.SetBinContent(hTree.GetNbinsX(),oFlow) |
124 |
+ |
hTree.SetBinError(1,uFlowErr) |
125 |
+ |
hTree.SetBinError(hTree.GetNbinsX(),oFlowErr) |
126 |
+ |
|
127 |
|
|
128 |
|
print '\t-->import %s\t Integral: %s'%(job.name,hTree.Integral()) |
129 |
|
|
130 |
|
hTree.SetDirectory(0) |
131 |
|
input.Close() |
132 |
|
|
115 |
– |
|
116 |
– |
|
133 |
|
return hTree, group |
134 |
|
|
135 |
|
|
145 |
|
num=[0]*len(setup) |
146 |
|
for i in range(0,len(setup)): |
147 |
|
for j in range(0,len(histos)): |
148 |
< |
if typs[j] in setup[i]: |
148 |
> |
if typs[j] == setup[i]: |
149 |
|
num[i]+=1 |
150 |
|
ordnung.append(histos[j]) |
151 |
|
ordnungtyp.append(typs[j]) |
156 |
|
histos=ordnung |
157 |
|
typs=ordnungtyp |
158 |
|
|
159 |
+ |
print typs |
160 |
+ |
|
161 |
|
for k in range(0,len(num)): |
162 |
|
for m in range(0,num[k]): |
163 |
|
if m > 0: |