ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/VHbb/python/gethistofromtree.py
Revision: 1.7
Committed: Thu Aug 2 16:03:52 2012 UTC (12 years, 9 months ago) by peller
Content type: text/x-python
Branch: MAIN
Changes since 1.6: +30 -9 lines
Log Message:
removed flavour splitting, fixed training readin problem

File Contents

# Content
1 from samplesclass import sample
2 from printcolor import printc
3 import pickle
4 import ROOT
5 from ROOT import TFile, TTree
6 import ROOT
7 from array import array
8 from BetterConfigParser import BetterConfigParser
9 import sys
10
11
12 #load config
13 config = BetterConfigParser()
14 config.read('./config')
15
16 #get locations:
17 Wdir=config.get('Directories','Wdir')
18 anaTag=config.get('Analysis','tag')
19
20
21
22 def getScale(job,rescale,subsample=-1):
23 input = TFile.Open(job.getpath())
24 CountWithPU = input.Get("CountWithPU")
25 CountWithPU2011B = input.Get("CountWithPU2011B")
26 #print lumi*xsecs[i]/hist.GetBinContent(1)
27
28 if subsample>-1:
29 xsec=float(job.xsec[subsample])
30 sf=float(job.sf[subsample])
31 else:
32 xsec=float(job.xsec)
33 sf=float(job.sf)
34
35
36 theScale = 1.
37 if anaTag == '7TeV':
38 theScale = float(job.lumi)*xsec*sf/(0.46502*CountWithPU.GetBinContent(1)+0.53498*CountWithPU2011B.GetBinContent(1))*rescale/float(job.split)
39 elif anaTag == '8TeV':
40 theScale = float(job.lumi)*xsec*sf/(CountWithPU.GetBinContent(1))*rescale/float(job.split)
41 return theScale
42
43 def getHistoFromTree(job,options,rescale=1,subsample=-1):
44 treeVar=options[0]
45 if subsample>-1:
46 name=job.subnames[subsample]
47 group=job.group[subsample]
48 else:
49 name=job.name
50 group=job.group
51
52 #title=job.plotname()
53 nBins=int(options[3])
54 xMin=float(options[4])
55 xMax=float(options[5])
56
57 if job.type != 'DATA':
58 cutcut=config.get('Cuts',options[7])
59 if subsample>0:
60 treeCut='%s & %s & EventForTraining == 0'%(cutcut,job.subcuts[subsample])
61 else:
62 treeCut='%s & EventForTraining == 0'%(cutcut)
63
64 elif job.type == 'DATA':
65 cutcut=config.get('Cuts',options[8])
66 treeCut='%s & EventForTraining == 0'%(cutcut)
67
68
69 input = TFile.Open(job.getpath(),'read')
70
71 Tree = input.Get(job.tree)
72 #Tree=tmpTree.CloneTree()
73 #Tree.SetDirectory(0)
74
75 #Tree=tmpTree.Clone()
76 weightF=config.get('Weights','weightF')
77 #hTree = ROOT.TH1F('%s'%name,'%s'%title,nBins,xMin,xMax)
78 #hTree.SetDirectory(0)
79 #hTree.Sumw2()
80 #print 'drawing...'
81 if job.type != 'DATA':
82 #print treeCut
83 #print job.name
84 if Tree.GetEntries():
85 Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),'(%s)*(%s)' %(treeCut,weightF), "goff,e")
86 full=True
87 else:
88 full=False
89 elif job.type == 'DATA':
90
91 if len(options)>10:
92 if options[11] == 'blind':
93 treeCut = treeCut + '&'+treeVar+'<0'
94
95
96 Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),treeCut, "goff,e")
97 full = True
98 if full:
99 hTree = ROOT.gDirectory.Get(name)
100 else:
101 hTree = ROOT.TH1F('%s'%name,'%s'%name,nBins,xMin,xMax)
102 hTree.Sumw2()
103 #print job.name + ' Sumw2', hTree.GetEntries()
104
105 if job.type != 'DATA':
106 ScaleFactor = getScale(job,rescale,subsample)
107 if ScaleFactor != 0:
108 hTree.Scale(ScaleFactor)
109
110 print '\t-->import %s\t Integral: %s'%(job.name,hTree.Integral())
111
112 hTree.SetDirectory(0)
113 input.Close()
114
115
116
117 return hTree, group
118
119
120 ######################
121
122
123
124 def orderandadd(histos,typs,setup):
125 #ORDER AND ADD TOGETHER
126
127 ordnung=[]
128 ordnungtyp=[]
129 num=[0]*len(setup)
130 for i in range(0,len(setup)):
131 for j in range(0,len(histos)):
132 if typs[j] in setup[i]:
133 num[i]+=1
134 ordnung.append(histos[j])
135 ordnungtyp.append(typs[j])
136
137 del histos
138 del typs
139
140 histos=ordnung
141 typs=ordnungtyp
142
143 for k in range(0,len(num)):
144 for m in range(0,num[k]):
145 if m > 0:
146
147 #add
148 histos[k].Add(histos[k+1],1)
149 printc('magenta','','\t--> added %s to %s'%(typs[k],typs[k+1]))
150 del histos[k+1]
151 del typs[k+1]
152
153 del histos[len(setup):]
154 del typs[len(setup):]
155
156 return histos, typs
157
158