1 |
import sys,os
|
2 |
import pickle
|
3 |
import ROOT
|
4 |
from array import array
|
5 |
from printcolor import printc
|
6 |
from BetterConfigParser import BetterConfigParser
|
7 |
from TreeCache import TreeCache
|
8 |
|
9 |
class HistoMaker:
|
10 |
def __init__(self, samples, path, config, optionsList):
|
11 |
self.path = path
|
12 |
self.config = config
|
13 |
self.optionsList = optionsList
|
14 |
self.lumi=0.
|
15 |
self.cuts = []
|
16 |
for options in optionsList:
|
17 |
self.cuts.append(options['cut'])
|
18 |
#self.tc = TreeCache(self.cuts,samples,path)
|
19 |
self.tc = TreeCache(self.cuts,samples,path,config)
|
20 |
|
21 |
def get_histos_from_tree(self,job):
|
22 |
if self.lumi == 0:
|
23 |
raise Exception("You're trying to plot with no lumi")
|
24 |
|
25 |
hTreeList=[]
|
26 |
|
27 |
#get the conversion rate in case of BDT plots
|
28 |
TrainFlag = eval(self.config.get('Analysis','TrainFlag'))
|
29 |
BDT_add_cut='EventForTraining == 0'
|
30 |
|
31 |
|
32 |
plot_path = self.config.get('Directories','plotpath')
|
33 |
addOverFlow=eval(self.config.get('Plot_general','addOverFlow'))
|
34 |
|
35 |
# get all Histos at once
|
36 |
for options in self.optionsList:
|
37 |
name=job.name
|
38 |
group=job.group
|
39 |
treeVar=options['var']
|
40 |
name=options['name']
|
41 |
nBins=int(options['nBins'])
|
42 |
xMin=float(options['xMin'])
|
43 |
xMax=float(options['xMax'])
|
44 |
weightF=options['weight']
|
45 |
treeCut='%s'%(options['cut'])
|
46 |
CuttedTree = self.tc.get_tree(job,treeCut)
|
47 |
|
48 |
#options
|
49 |
|
50 |
if job.type != 'DATA':
|
51 |
if CuttedTree.GetEntries():
|
52 |
|
53 |
if 'RTight' in treeVar or 'RMed' in treeVar:
|
54 |
drawoption = '(%s)*(%s)'%(weightF,BDT_add_cut)
|
55 |
else:
|
56 |
drawoption = '%s'%(weightF)
|
57 |
CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax), drawoption, "goff,e")
|
58 |
full=True
|
59 |
else:
|
60 |
full=False
|
61 |
elif job.type == 'DATA':
|
62 |
if options['blind']:
|
63 |
if treeVar == 'H.mass':
|
64 |
CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),treeVar+'<90. || '+treeVar + '>150.' , "goff,e")
|
65 |
else:
|
66 |
CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),treeVar+'<0', "goff,e")
|
67 |
|
68 |
else:
|
69 |
CuttedTree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),'1', "goff,e")
|
70 |
full = True
|
71 |
if full:
|
72 |
hTree = ROOT.gDirectory.Get(name)
|
73 |
else:
|
74 |
hTree = ROOT.TH1F('%s'%name,'%s'%name,nBins,xMin,xMax)
|
75 |
hTree.Sumw2()
|
76 |
if job.type != 'DATA':
|
77 |
if 'RTight' in treeVar or 'RMed' in treeVar:
|
78 |
if TrainFlag:
|
79 |
MC_rescale_factor=2.
|
80 |
print 'I RESCALE BY 2.0'
|
81 |
else:
|
82 |
MC_rescale_factor = 1.
|
83 |
ScaleFactor = self.tc.get_scale(job,self.config,self.lumi)*MC_rescale_factor
|
84 |
else:
|
85 |
ScaleFactor = self.tc.get_scale(job,self.config,self.lumi)
|
86 |
if ScaleFactor != 0:
|
87 |
hTree.Scale(ScaleFactor)
|
88 |
#print '\t-->import %s\t Integral: %s'%(job.name,hTree.Integral())
|
89 |
if addOverFlow:
|
90 |
uFlow = hTree.GetBinContent(0)+hTree.GetBinContent(1)
|
91 |
oFlow = hTree.GetBinContent(hTree.GetNbinsX()+1)+hTree.GetBinContent(hTree.GetNbinsX())
|
92 |
uFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(0),2)+ROOT.TMath.Power(hTree.GetBinError(1),2))
|
93 |
oFlowErr = ROOT.TMath.Sqrt(ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()),2)+ROOT.TMath.Power(hTree.GetBinError(hTree.GetNbinsX()+1),2))
|
94 |
hTree.SetBinContent(1,uFlow)
|
95 |
hTree.SetBinContent(hTree.GetNbinsX(),oFlow)
|
96 |
hTree.SetBinError(1,uFlowErr)
|
97 |
hTree.SetBinError(hTree.GetNbinsX(),oFlowErr)
|
98 |
hTree.SetDirectory(0)
|
99 |
gDict = {}
|
100 |
gDict[group] = hTree
|
101 |
hTreeList.append(gDict)
|
102 |
|
103 |
return hTreeList
|
104 |
|
105 |
|
106 |
@staticmethod
|
107 |
def orderandadd(histo_dicts,setup):
|
108 |
print histo_dicts
|
109 |
ordered_histo_dict = {}
|
110 |
for sample in setup:
|
111 |
nSample = 0
|
112 |
for histo_dict in histo_dicts:
|
113 |
if histo_dict.has_key(sample):
|
114 |
if nSample == 0:
|
115 |
ordered_histo_dict[sample] = histo_dict[sample]
|
116 |
else:
|
117 |
printc('magenta','','\t--> added %s to %s'%(sample,sample))
|
118 |
ordered_histo_dict[sample].Add(histo_dict[sample])
|
119 |
nSample += 1
|
120 |
return ordered_histo_dict
|