1 |
#!/usr/bin/env python
|
2 |
import sys
|
3 |
import os
|
4 |
import ROOT
|
5 |
import shutil
|
6 |
from ROOT import TFile
|
7 |
from array import array
|
8 |
from init import *
|
9 |
#from initMuMu import *
|
10 |
from math import sqrt
|
11 |
import random
|
12 |
from copy import copy
|
13 |
#suppres the EvalInstace conversion warning bug
|
14 |
import warnings
|
15 |
warnings.filterwarnings( action='ignore', category=RuntimeWarning, message='creating converter.*' )
|
16 |
from ConfigParser import SafeConfigParser
|
17 |
from samplesinfo import sample
|
18 |
from mvainfos import mvainfo
|
19 |
import pickle
|
20 |
from progbar import progbar
|
21 |
|
22 |
|
23 |
for i in range(0,len(backgroundFiles)): backgroundFiles[i] = prefix + backgroundFiles[i]
|
24 |
for i in range(0,len(signalFiles)): signalFiles[i] = prefix + signalFiles[i]
|
25 |
for i in range(0,len(dataFiles)): dataFiles[i] = prefix + dataFiles[i]
|
26 |
#for i in range(0,len(InFiles0)): InFiles0[i] = Preprefix + InFiles0[i]
|
27 |
#for i in range(0,len(InFiles1)): InFiles1[i] = Preprefix + InFiles1[i]
|
28 |
#for i in range(0,len(InFiles2)): InFiles2[i] = Preprefix + InFiles2[i]
|
29 |
|
30 |
#add ehm together
|
31 |
jobs = copy(backgroundFiles)
|
32 |
jobs.append(signalFiles[0])
|
33 |
legenden = backname
|
34 |
legenden.append(signame[0])
|
35 |
xsecs = xsec
|
36 |
xsecs.append(signal_xsec)
|
37 |
if sys.argv[1] == 'stack' or 'pie': treeCut = treeCutPlot
|
38 |
else: treeCut = treeCutMVA
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
#CONFIGURE
|
44 |
|
45 |
#load config
|
46 |
config = SafeConfigParser()
|
47 |
config.read('./config')
|
48 |
|
49 |
#get locations:
|
50 |
Wdir=config.get('Directories','Wdir')
|
51 |
|
52 |
|
53 |
#systematics
|
54 |
systematics=config.get('systematics','systematics')
|
55 |
systematics=systematics.split(' ')
|
56 |
|
57 |
#TreeVar Array
|
58 |
MVA_Vars={}
|
59 |
for systematic in systematics:
|
60 |
MVA_Vars[systematic]=config.get('treeVars',systematic)
|
61 |
MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
|
62 |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
##############################
|
76 |
# #
|
77 |
# VHbb Analysis Stuff #
|
78 |
# ETHZ, Philipp Eller #
|
79 |
# #
|
80 |
##############################
|
81 |
|
82 |
|
83 |
#*********************HELPERS*******************************
|
84 |
def getTree(path,job):
|
85 |
Tree = ROOT.TChain(treeName)
|
86 |
Tree.Add("%s/%s.root" %(path,job))
|
87 |
Tree.SetDirectory(0)
|
88 |
#nEntries = Tree.GetEntries()
|
89 |
return Tree
|
90 |
|
91 |
#NEW
|
92 |
def getTree2(job):
|
93 |
Tree = ROOT.TChain(job.tree)
|
94 |
Tree.Add(job.getpath())
|
95 |
Tree.SetDirectory(0)
|
96 |
return Tree
|
97 |
|
98 |
def getScale2(job):
|
99 |
input = TFile.Open(job.getpath())
|
100 |
CountWithPU = input.Get("CountWithPU")
|
101 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
102 |
#print lumi*xsecs[i]/hist.GetBinContent(1)
|
103 |
return float(job.lumi)*float(job.xsec)/(0.46502*CountWithPU.GetBinContent(1)+0.53498*CountWithPU2011B.GetBinContent(1))*1/float(job.split)
|
104 |
|
105 |
def getScale(path,job):
|
106 |
input = TFile.Open("%s/%s.root" %(path,job))
|
107 |
CountWithPU = input.Get("CountWithPU")
|
108 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
109 |
i=jobs.index(job)
|
110 |
return lumi*xsecs[i]/(0.46502*CountWithPU.GetBinContent(1)+0.53498*CountWithPU2011B.GetBinContent(1))
|
111 |
|
112 |
|
113 |
#NEW
|
114 |
def AddSystematics(path):
|
115 |
|
116 |
infofile = open(path+'/samples.info','r')
|
117 |
info = pickle.load(infofile)
|
118 |
infofile.close()
|
119 |
os.mkdir(path+'/sys')
|
120 |
|
121 |
for job in info:
|
122 |
|
123 |
if job.type != 'DATA':
|
124 |
print '\t - %s' %(job.name)
|
125 |
|
126 |
input = TFile.Open(job.getpath(),'read')
|
127 |
Count = input.Get("Count")
|
128 |
CountWithPU = input.Get("CountWithPU")
|
129 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
130 |
tree = input.Get(job.tree)
|
131 |
nEntries = tree.GetEntries()
|
132 |
|
133 |
job.addpath('/sys')
|
134 |
output = ROOT.TFile(job.getpath(), 'RECREATE')
|
135 |
newtree = tree.CloneTree(0)
|
136 |
job.SYS = ['Nominal','JER_up','JER_down','JES_up','JES_down','beff_up','beff_down','bmis_up','bmis_down']
|
137 |
|
138 |
|
139 |
hJ0 = ROOT.TLorentzVector()
|
140 |
hJ1 = ROOT.TLorentzVector()
|
141 |
|
142 |
#JER branches
|
143 |
hJet_pt_JER_up = array('f',[0]*2)
|
144 |
newtree.Branch('hJet_pt_JER_up',hJet_pt_JER_up,'hJet_pt_JER_up[2]/F')
|
145 |
hJet_pt_JER_down = array('f',[0]*2)
|
146 |
newtree.Branch('hJet_pt_JER_down',hJet_pt_JER_down,'hJet_pt_JER_down[2]/F')
|
147 |
hJet_e_JER_up = array('f',[0]*2)
|
148 |
newtree.Branch('hJet_e_JER_up',hJet_e_JER_up,'hJet_e_JER_up[2]/F')
|
149 |
hJet_e_JER_down = array('f',[0]*2)
|
150 |
newtree.Branch('hJet_e_JER_down',hJet_e_JER_down,'hJet_e_JER_down[2]/F')
|
151 |
H_JER = array('f',[0]*4)
|
152 |
newtree.Branch('H_JER',H_JER,'mass_up:mass_down:pt_up:pt_down/F')
|
153 |
|
154 |
#JES branches
|
155 |
hJet_pt_JES_up = array('f',[0]*2)
|
156 |
newtree.Branch('hJet_pt_JES_up',hJet_pt_JES_up,'hJet_pt_JES_up[2]/F')
|
157 |
hJet_pt_JES_down = array('f',[0]*2)
|
158 |
newtree.Branch('hJet_pt_JES_down',hJet_pt_JES_down,'hJet_pt_JES_down[2]/F')
|
159 |
hJet_e_JES_up = array('f',[0]*2)
|
160 |
newtree.Branch('hJet_e_JES_up',hJet_e_JES_up,'hJet_e_JES_up[2]/F')
|
161 |
hJet_e_JES_down = array('f',[0]*2)
|
162 |
newtree.Branch('hJet_e_JES_down',hJet_e_JES_down,'hJet_e_JES_down[2]/F')
|
163 |
H_JES = array('f',[0]*4)
|
164 |
newtree.Branch('H_JES',H_JES,'mass_up:mass_down:pt_up:pt_down/F')
|
165 |
|
166 |
#Add training Flag
|
167 |
EventForTraining = array('f',[0])
|
168 |
newtree.Branch('EventForTraining',EventForTraining,'EventForTraining/F')
|
169 |
|
170 |
iter=0
|
171 |
|
172 |
for entry in range(0,nEntries):
|
173 |
tree.GetEntry(entry)
|
174 |
|
175 |
#fill training flag
|
176 |
iter+=1
|
177 |
if (iter%2==0):
|
178 |
EventForTraining=1
|
179 |
else:
|
180 |
EventForTraining=0
|
181 |
|
182 |
hJet_pt0 = tree.hJet_pt[0]
|
183 |
hJet_pt1 = tree.hJet_pt[1]
|
184 |
hJet_eta0 = tree.hJet_eta[0]
|
185 |
hJet_eta1 = tree.hJet_eta[1]
|
186 |
hJet_genPt0 = tree.hJet_genPt[0]
|
187 |
hJet_genPt1 = tree.hJet_genPt[1]
|
188 |
hJet_e0 = tree.hJet_e[0]
|
189 |
hJet_e1 = tree.hJet_e[1]
|
190 |
hJet_phi0 = tree.hJet_phi[0]
|
191 |
hJet_phi1 = tree.hJet_phi[1]
|
192 |
hJet_JECUnc0 = tree.hJet_JECUnc[0]
|
193 |
hJet_JECUnc1 = tree.hJet_JECUnc[1]
|
194 |
|
195 |
|
196 |
for updown in ['up','down']:
|
197 |
#JER
|
198 |
if updown == 'up':
|
199 |
inner = 0.06
|
200 |
outer = 0.1
|
201 |
if updown == 'down':
|
202 |
inner = -0.06
|
203 |
outer = -0.1
|
204 |
#Calculate
|
205 |
if abs(hJet_eta0)<1.1: res0 = inner
|
206 |
else: res0 = outer
|
207 |
if abs(hJet_eta1)<1.1: res1 = inner
|
208 |
else: res1 = outer
|
209 |
rPt0 = hJet_pt0 + (hJet_pt0-hJet_genPt0)*res0
|
210 |
rPt1 = hJet_pt1 + (hJet_pt1-hJet_genPt1)*res1
|
211 |
rE0 = hJet_e0*rPt0/hJet_pt0
|
212 |
rE1 = hJet_e1*rPt1/hJet_pt1
|
213 |
hJ0.SetPtEtaPhiE(rPt0,hJet_eta0,hJet_phi0,rE0)
|
214 |
hJ1.SetPtEtaPhiE(rPt1,hJet_eta1,hJet_phi1,rE1)
|
215 |
#Set
|
216 |
if updown == 'up':
|
217 |
hJet_pt_JER_up[0]=rPt0
|
218 |
hJet_pt_JER_up[1]=rPt1
|
219 |
hJet_e_JER_up[0]=rE0
|
220 |
hJet_e_JER_up[1]=rE1
|
221 |
H_JER[0]=(hJ0+hJ1).M()
|
222 |
H_JER[2]=(hJ0+hJ1).Pt()
|
223 |
if updown == 'down':
|
224 |
hJet_pt_JER_down[0]=rPt0
|
225 |
hJet_pt_JER_down[1]=rPt1
|
226 |
hJet_e_JER_down[0]=rE0
|
227 |
hJet_e_JER_down[1]=rE1
|
228 |
H_JER[1]=(hJ0+hJ1).M()
|
229 |
H_JER[3]=(hJ0+hJ1).Pt()
|
230 |
|
231 |
#JES
|
232 |
if updown == 'up':
|
233 |
variation=1
|
234 |
if updown == 'down':
|
235 |
variation=-1
|
236 |
#calculate
|
237 |
rPt0 = hJet_pt0*(1+variation*hJet_JECUnc0)
|
238 |
rPt1 = hJet_pt1*(1+variation*hJet_JECUnc1)
|
239 |
rE0 = hJet_e0*(1+variation*hJet_JECUnc0)
|
240 |
rE1 = hJet_e1*(1+variation*hJet_JECUnc1)
|
241 |
hJ0.SetPtEtaPhiE(rPt0,hJet_eta0,hJet_phi0,rE0)
|
242 |
hJ1.SetPtEtaPhiE(rPt1,hJet_eta1,hJet_phi1,rE1)
|
243 |
#Fill
|
244 |
if updown == 'up':
|
245 |
hJet_pt_JES_up[0]=rPt0
|
246 |
hJet_pt_JES_up[1]=rPt1
|
247 |
hJet_e_JES_up[0]=rE0
|
248 |
hJet_e_JES_up[1]=rE1
|
249 |
H_JES[0]=(hJ0+hJ1).M()
|
250 |
H_JES[2]=(hJ0+hJ1).Pt()
|
251 |
if updown == 'down':
|
252 |
hJet_pt_JES_down[0]=rPt0
|
253 |
hJet_pt_JES_down[1]=rPt1
|
254 |
hJet_e_JES_down[0]=rE0
|
255 |
hJet_e_JES_down[1]=rE1
|
256 |
H_JES[1]=(hJ0+hJ1).M()
|
257 |
H_JES[3]=(hJ0+hJ1).Pt()
|
258 |
|
259 |
newtree.Fill()
|
260 |
|
261 |
newtree.Write()
|
262 |
Count.Write()
|
263 |
CountWithPU.Write()
|
264 |
CountWithPU2011B.Write()
|
265 |
output.Close()
|
266 |
|
267 |
else: #(is data)
|
268 |
|
269 |
shutil.copy(job.getpath(),path+'/sys')
|
270 |
job.addpath('/sys')
|
271 |
|
272 |
infofile = open(path+'/sys'+'/samples.info','w')
|
273 |
pickle.dump(info,infofile)
|
274 |
infofile.close()
|
275 |
|
276 |
#NEW
|
277 |
def Addcut(path,addpath,Samplecut,Datacut):
|
278 |
|
279 |
infofile = open(path+'/samples.info','r')
|
280 |
info = pickle.load(infofile)
|
281 |
infofile.close()
|
282 |
os.mkdir(path+addpath)
|
283 |
addprefix=''
|
284 |
|
285 |
Samplecut=config.get('Cuts',Samplecut)
|
286 |
Datacut=config.get('Cuts',Datacut)
|
287 |
|
288 |
|
289 |
for job in info:
|
290 |
if job.type != 'DATA':
|
291 |
cut = Samplecut
|
292 |
print '\t - %s' %(job.name)
|
293 |
copytree2(job,addpath,addprefix,cut)
|
294 |
job.addpath(addpath)
|
295 |
job.addtreecut(cut)
|
296 |
job.addprefix(addprefix)
|
297 |
job.addcomment('added cut ' + cut)
|
298 |
|
299 |
if job.type == 'DATA':
|
300 |
cut = Datacut
|
301 |
print '\t - %s' %(job.name)
|
302 |
copytree2(job,addpath,addprefix,cut)
|
303 |
job.addpath(addpath)
|
304 |
job.addtreecut(cut)
|
305 |
job.addprefix(addprefix)
|
306 |
job.addcomment('added cut ' + cut)
|
307 |
|
308 |
infofile = open(path+addpath+'/samples.info','w')
|
309 |
pickle.dump(info,infofile)
|
310 |
infofile.close()
|
311 |
|
312 |
def Addsinglecut(path,name,prefix,cut):
|
313 |
|
314 |
infofile = open(path+'/samples.info','r')
|
315 |
info = pickle.load(infofile)
|
316 |
infofile.close()
|
317 |
|
318 |
for job in info:
|
319 |
if job.name == name:
|
320 |
print '\t - %s' %(job.name)
|
321 |
copytree2(job,'',prefix,cut)
|
322 |
job.addtreecut(cut)
|
323 |
job.addcomment('added cut ' + cut)
|
324 |
|
325 |
infofile = open(path+'/samples.info','w')
|
326 |
pickle.dump(info,infofile)
|
327 |
infofile.close()
|
328 |
|
329 |
def AddFile(path,name,newname,prefix,cut):
|
330 |
|
331 |
infofile = open(path+'/samples.info','r')
|
332 |
info = pickle.load(infofile)
|
333 |
infofile.close()
|
334 |
|
335 |
for job in info:
|
336 |
if job.name == name:
|
337 |
print '\t - %s' %(job.name)
|
338 |
copytree2(job,'',prefix,cut)
|
339 |
job2 = copy(job)
|
340 |
job2.addtreecut(cut)
|
341 |
#job2.addprefix(prefix)
|
342 |
job2.addcomment('added cut ' + cut)
|
343 |
job2.name=newname
|
344 |
|
345 |
info.append(job2)
|
346 |
infofile = open(path+'/samples.info','w')
|
347 |
pickle.dump(info,infofile)
|
348 |
infofile.close()
|
349 |
|
350 |
def getHistoFromTree(path,job,scale):
|
351 |
Tree = getTree(path,job)
|
352 |
hTree = ROOT.TH1F(job,job,nBins,xMin,xMax)
|
353 |
if scale !=0:
|
354 |
Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,job,nBins,xMin,xMax),'%s*(%s)' %(weightF,treeCut), "goff")
|
355 |
else:
|
356 |
Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,job,nBins,xMin,xMax),'(%s)' %(treeCut), "goff")
|
357 |
hTree = ROOT.gDirectory.Get(job)
|
358 |
hTree.SetDirectory(0)
|
359 |
if scale !=0:
|
360 |
ScaleFactor = getScale(treePath,job)
|
361 |
if ScaleFactor != 0:
|
362 |
hTree.Scale(ScaleFactor)
|
363 |
return hTree
|
364 |
|
365 |
def getHistoFromTree2(job,options):
|
366 |
Tree = getTree2(job)
|
367 |
treeVar=options[0]
|
368 |
name=job.name
|
369 |
title=job.plotname()
|
370 |
nBins=int(options[3])
|
371 |
xMin=float(options[4])
|
372 |
xMax=float(options[5])
|
373 |
if job.type != 'DATA':
|
374 |
treeCut=config.get('Cuts',options[7])
|
375 |
elif job.type == 'DATA':
|
376 |
treeCut=config.get('Cuts',options[8])
|
377 |
weightF=config.get('Weights','weightF')
|
378 |
hTree = ROOT.TH1F('%s'%name,'%s'%title,nBins,xMin,xMax)
|
379 |
hTree.Sumw2()
|
380 |
if job.type != 'DATA':
|
381 |
Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),'%s*(%s)' %(weightF,treeCut), "goff,e")
|
382 |
else:
|
383 |
Tree.Draw('%s>>%s(%s,%s,%s)' %(treeVar,name,nBins,xMin,xMax),'(%s)' %(treeCut), "goff,e")
|
384 |
hTree = ROOT.gDirectory.Get(name)
|
385 |
hTree.SetDirectory(0)
|
386 |
#print job.name + ' Sumw2', hTree.GetEntries()
|
387 |
|
388 |
if job.type != 'DATA':
|
389 |
ScaleFactor = getScale2(job)
|
390 |
if ScaleFactor != 0:
|
391 |
hTree.Scale(ScaleFactor)
|
392 |
|
393 |
hTree.SetFillStyle(1001)
|
394 |
hTree.SetFillColor(job.plotcolor())
|
395 |
hTree.SetLineWidth(1)
|
396 |
print '\t-->import %s\t Integral: %s'%(job.name,hTree.Integral())
|
397 |
|
398 |
|
399 |
return hTree, job.plotname()
|
400 |
|
401 |
def copytreeetc(path,job,Nprefix,Acut):
|
402 |
input = TFile.Open("%s/%s%s.root" %(skim_path,Preprefix,job))
|
403 |
Count = input.Get("Count")
|
404 |
CountWithPU = input.Get("CountWithPU")
|
405 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
406 |
inputTree = input.Get(treeName)
|
407 |
nEntries = inputTree.GetEntries()
|
408 |
output = TFile.Open("%s/%s%s%s.root" %(path,Preprefix,Nprefix,job),'recreate')
|
409 |
print 'copy file: ' + job
|
410 |
outputTree = inputTree.CopyTree(Acut)
|
411 |
kEntries = outputTree.GetEntries()
|
412 |
#factor = kEntries/nEntries
|
413 |
print "\t before cuts\t %s" %nEntries
|
414 |
print "\t survived\t %s" %kEntries
|
415 |
#print factor
|
416 |
#print "\t Factor for Scaling is %s" %factor
|
417 |
outputTree.AutoSave()
|
418 |
#Count.Scale(factor)
|
419 |
Count.Write()
|
420 |
CountWithPU.Write()
|
421 |
#CountWithPU.Scale(factor)
|
422 |
CountWithPU2011B.Write()
|
423 |
#CountWithPU2011B.Scale(factor)
|
424 |
input.Close()
|
425 |
output.Close()
|
426 |
|
427 |
#NEW
|
428 |
def copytree2(job,addpath,addprefix,addcut):
|
429 |
input = TFile.Open(job.getpath(),'read')
|
430 |
Count = input.Get("Count")
|
431 |
CountWithPU = input.Get("CountWithPU")
|
432 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
433 |
inputTree = input.Get(job.tree)
|
434 |
nEntries = inputTree.GetEntries()
|
435 |
output = TFile.Open("%s%s/%s%s%s.root" %(job.path,addpath,addprefix,job.prefix,job.identifier()),'recreate')
|
436 |
print '\t\tcopy file: ' + job.name + ' with cut ' + addcut + ' to ' + addpath
|
437 |
outputTree = inputTree.CopyTree(addcut)
|
438 |
kEntries = outputTree.GetEntries()
|
439 |
print "\t before cuts\t %s" %nEntries
|
440 |
print "\t survived\t %s" %kEntries
|
441 |
outputTree.AutoSave()
|
442 |
Count.Write()
|
443 |
CountWithPU.Write()
|
444 |
CountWithPU2011B.Write()
|
445 |
input.Close()
|
446 |
output.Close()
|
447 |
|
448 |
|
449 |
def CutCopy(mode):
|
450 |
|
451 |
if mode == 'all':
|
452 |
path = treePath
|
453 |
for job in InFiles0:
|
454 |
copytreeetc(path,job,prefix0[0],cut0[0])#+'&'+treeCutMVA)
|
455 |
for i in range(2):
|
456 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i])#+'&'+treeCutMVA)
|
457 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i])#+'&'+treeCutMVA)
|
458 |
|
459 |
if mode == 'Zbb':
|
460 |
path = treePath + '/Zbb'
|
461 |
for job in InFiles0:
|
462 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutZbb)
|
463 |
for i in range(2):
|
464 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+treeCutZbb)
|
465 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+treeCutZbb)
|
466 |
for job in dataFiles0:
|
467 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutZbb)
|
468 |
if mode == 'Zlight':
|
469 |
path = treePath + '/Zlight'
|
470 |
for job in InFiles0:
|
471 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutZlight)
|
472 |
for i in range(2):
|
473 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+treeCutZlight)
|
474 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+treeCutZlight)
|
475 |
for job in dataFiles0:
|
476 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutZlight)
|
477 |
if mode == 'Top':
|
478 |
path = treePath + '/Top'
|
479 |
for job in InFiles0:
|
480 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutTop)
|
481 |
for i in range(2):
|
482 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+treeCutTop)
|
483 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+treeCutTop)
|
484 |
for job in dataFiles0:
|
485 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutTop)
|
486 |
if mode == 'Signal':
|
487 |
path = treePath + '/Signal'
|
488 |
for job in InFiles0:
|
489 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutSignal)
|
490 |
for i in range(2):
|
491 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+treeCutSignal)
|
492 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+treeCutSignal)
|
493 |
for job in dataFiles0:
|
494 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+treeCutSignal)
|
495 |
|
496 |
if mode == 'data':
|
497 |
path = treePath #+ '/test'
|
498 |
for job in dataFiles0:
|
499 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+triggerFlags[0])#+'&'+treeCutMVA)
|
500 |
|
501 |
if mode == 'test':
|
502 |
path = treePath +'/test'
|
503 |
for job in InFiles0:
|
504 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+cut_even+'&'+treeCutMVA)
|
505 |
for i in range(2):
|
506 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+cut_even+'&'+treeCutMVA)
|
507 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+cut_even+'&'+treeCutMVA)
|
508 |
|
509 |
if mode == 'train':
|
510 |
path = treePath +'/train'
|
511 |
for job in InFiles0:
|
512 |
copytreeetc(path,job,prefix0[0],cut0[0]+'&'+cut_odd+'&'+treeCutMVA)
|
513 |
for i in range(2):
|
514 |
copytreeetc(path,InFiles1[0],prefix1[i],cut1[i]+'&'+cut_odd+'&'+treeCutMVA)
|
515 |
copytreeetc(path,InFiles2[0],prefix2[i],cut2[i]+'&'+cut_odd+'&'+treeCutMVA)
|
516 |
|
517 |
def createComparison():
|
518 |
ROOT.gROOT.SetStyle("Plain")
|
519 |
c = ROOT.TCanvas(title,title, 800, 600)
|
520 |
c.SetLogy()
|
521 |
allStack = ROOT.THStack(title,title)
|
522 |
histos = []
|
523 |
for job in jobs:
|
524 |
hTemp = getHistoFromTree(treePath,job)
|
525 |
histos.append(hTemp)
|
526 |
l = ROOT.TLegend(0.55, 0.82, 0.93, 0.93)
|
527 |
for i in range(0,len(histos)):
|
528 |
histos[i].SetFillStyle(0)
|
529 |
histos[i].SetLineColor(i+2)
|
530 |
histos[i].SetLineWidth(2)
|
531 |
allStack.Add(histos[i])
|
532 |
l.AddEntry(histos[i],legenden[i],'l')
|
533 |
allStack.Draw("HISTNOSTACK")
|
534 |
allStack.GetXaxis().SetTitle(xTitle)
|
535 |
allStack.GetYaxis().SetTitle(yTitle)
|
536 |
allStack.GetXaxis().SetRangeUser(xMin,xMax)
|
537 |
l.Draw()
|
538 |
name = '%s/Comparison/%s.png' %(plotPath,title)
|
539 |
c.Print(name)
|
540 |
|
541 |
def plot():
|
542 |
print 'ok, i make plots for you now...'
|
543 |
histos = []
|
544 |
for job in jobs:
|
545 |
hTemp = getHistoFromTree(treePath,job,1)
|
546 |
histos.append(hTemp)
|
547 |
datas = []
|
548 |
for job in dataFiles:
|
549 |
hTemp = getHistoFromTree(treePath,job,0)
|
550 |
datas.append(hTemp)
|
551 |
createStack(histos,datas,plotPath,title,treeVar,xMin,xMax,nBins,xTitle,yTitle)
|
552 |
|
553 |
def allplots():
|
554 |
print 'ok, i make all plots for you now...'
|
555 |
for i in range(0,len(treeVars)-1):
|
556 |
global treeVar
|
557 |
treeVar = treeVars[i]
|
558 |
xTitle = treeVar
|
559 |
title = set + '_' + treeVar
|
560 |
global xMin
|
561 |
xMin = xMinS[i]
|
562 |
global xMax
|
563 |
xMax = xMaxS[i]
|
564 |
global nBins
|
565 |
nBins = nBinsS[i]
|
566 |
histos = []
|
567 |
for job in jobs:
|
568 |
hTemp = getHistoFromTree(treePath,job,1)
|
569 |
histos.append(hTemp)
|
570 |
datas = []
|
571 |
for job in dataFiles:
|
572 |
hTemp = getHistoFromTree(treePath,job,0)
|
573 |
datas.append(hTemp)
|
574 |
createStack(histos,datas,plotPath,title,treeVar,xMin,xMax,nBins,xTitle,yTitle)
|
575 |
|
576 |
def createStack(histos,datas,plotPath,title,treeVar,xMin,xMax,nBins,xTitle,yTitle):
|
577 |
#*********************STACK*******************************
|
578 |
print '*******************'
|
579 |
print 'now i am working on ' + title
|
580 |
ROOT.gROOT.SetStyle("Plain")
|
581 |
c = ROOT.TCanvas(title,title, 800, 600)
|
582 |
allStack = ROOT.THStack(title,title)
|
583 |
l = ROOT.TLegend(0.68, 0.63, 0.88, 0.88)
|
584 |
MC_integral=0
|
585 |
for i in range(0,len(histos)):
|
586 |
histos[i].SetFillStyle(1001)
|
587 |
histos[i].SetFillColor(color[i])
|
588 |
histos[i].SetLineWidth(1)
|
589 |
#histos[i].SetLineColor(color[i])
|
590 |
print "\t%s integral:" %legenden[i]
|
591 |
print histos[i].Integral()
|
592 |
MC_integral=MC_integral+histos[i].Integral()
|
593 |
print "MC integral:"
|
594 |
print MC_integral
|
595 |
histos[0].Add(histos[1],1)
|
596 |
del histos[1]
|
597 |
histos[1].Add(histos[2],1)
|
598 |
del histos[2]
|
599 |
for i in range(2):
|
600 |
histos[2].Add(histos[3],1)
|
601 |
del histos[3]
|
602 |
for i in range(5):
|
603 |
histos[4].Add(histos[5],1)
|
604 |
del histos[5]
|
605 |
k=len(histos)
|
606 |
for j in range(0,k):
|
607 |
#print histos[j].GetBinContent(1)
|
608 |
i=k-j-1
|
609 |
allStack.Add(histos[i])
|
610 |
l.AddEntry(histos[j],legende[j],'F')
|
611 |
d1 = ROOT.TH1F('d1','d1',nBins,xMin,xMax)
|
612 |
|
613 |
for i in range(0,len(datas)):
|
614 |
d1.Add(datas[i],1)
|
615 |
print "data integral:"
|
616 |
print d1.Integral()
|
617 |
print d1.GetEntries()
|
618 |
l.AddEntry(d1,datalegend,'PL')
|
619 |
allStack.SetTitle()
|
620 |
allStack.Draw("")
|
621 |
allStack.GetXaxis().SetTitle(xTitle)
|
622 |
allStack.GetYaxis().SetTitle(yTitle)
|
623 |
allStack.GetXaxis().SetRangeUser(xMin,xMax)
|
624 |
allStack.GetYaxis().SetRangeUser(0,20000)
|
625 |
Ymax = max(allStack.GetMaximum(),d1.GetMaximum())*1.2
|
626 |
allStack.SetMaximum(Ymax)
|
627 |
allStack.SetMinimum(0.01)
|
628 |
c.Update()
|
629 |
ROOT.gPad.SetLogy()
|
630 |
ROOT.gPad.SetTicks(1,1)
|
631 |
allStack.Draw("")
|
632 |
d1.SetMarkerStyle(21)
|
633 |
d1.Draw("P0,E1,X0,same")
|
634 |
l.SetFillColor(0)
|
635 |
l.SetBorderSize(0)
|
636 |
l.Draw()
|
637 |
name = '%s/Stack/%s.png' %(plotPath,title)
|
638 |
c.Print(name)
|
639 |
|
640 |
|
641 |
def treeStack(path,var,data):
|
642 |
#*********************STACK*******************************
|
643 |
|
644 |
plot=config.get('Plot',var)
|
645 |
|
646 |
infofile = open(path+'/samples.info','r')
|
647 |
info = pickle.load(infofile)
|
648 |
infofile.close()
|
649 |
|
650 |
options = plot.split(',')
|
651 |
name=options[1]
|
652 |
title = options[2]
|
653 |
nBins=int(options[3])
|
654 |
xMin=float(options[4])
|
655 |
xMax=float(options[5])
|
656 |
|
657 |
setup=config.get('Plot','setup')
|
658 |
setup=setup.split(',')
|
659 |
|
660 |
|
661 |
print '\nProducing Plot of %s\n'%title
|
662 |
|
663 |
|
664 |
histos = []
|
665 |
typs = []
|
666 |
datas = []
|
667 |
datatyps =[]
|
668 |
|
669 |
for job in info:
|
670 |
if job.name != 'DATA':
|
671 |
hTemp, typ = getHistoFromTree2(job,options)
|
672 |
histos.append(hTemp)
|
673 |
typs.append(typ)
|
674 |
elif job.name in data:
|
675 |
hTemp, typ = getHistoFromTree2(job,options)
|
676 |
datas.append(hTemp)
|
677 |
datatyps.append(typ)
|
678 |
|
679 |
|
680 |
|
681 |
|
682 |
ROOT.gROOT.SetStyle("Plain")
|
683 |
c = ROOT.TCanvas(name,title, 800, 600)
|
684 |
allStack = ROOT.THStack(name,title)
|
685 |
l = ROOT.TLegend(0.68, 0.63, 0.88, 0.88)
|
686 |
MC_integral=0
|
687 |
MC_entries=0
|
688 |
|
689 |
for histo in histos:
|
690 |
MC_integral+=histo.Integral()
|
691 |
#MC_entries+=histo.GetEntries()
|
692 |
print "\033[1;32m\n\tMC integral = %s\033[1;m"%MC_integral
|
693 |
#flow = MC_entries-MC_integral
|
694 |
#if flow > 0:
|
695 |
# print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
696 |
|
697 |
#ORDER AND ADD TOGETHER
|
698 |
|
699 |
ordnung=[]
|
700 |
ordnungtyp=[]
|
701 |
num=[0]*len(setup)
|
702 |
for i in range(0,len(setup)):
|
703 |
for j in range(0,len(histos)):
|
704 |
if typs[j] == setup[i]:
|
705 |
num[i]+=1
|
706 |
ordnung.append(histos[j])
|
707 |
ordnungtyp.append(typs[j])
|
708 |
|
709 |
del histos
|
710 |
del typs
|
711 |
|
712 |
histos=ordnung
|
713 |
typs=ordnungtyp
|
714 |
|
715 |
for k in range(0,len(num)):
|
716 |
for m in range(0,num[k]):
|
717 |
if m > 0:
|
718 |
histos[k].Add(histos[k+1],1)
|
719 |
del histos[k+1]
|
720 |
del typs[k+1]
|
721 |
|
722 |
k=len(histos)
|
723 |
for j in range(0,k):
|
724 |
#print histos[j].GetBinContent(1)
|
725 |
i=k-j-1
|
726 |
allStack.Add(histos[i])
|
727 |
l.AddEntry(histos[j],typs[j],'F')
|
728 |
|
729 |
|
730 |
d1 = ROOT.TH1F('d1','d1',nBins,xMin,xMax)
|
731 |
|
732 |
datatitle=''
|
733 |
for i in range(0,len(datas)):
|
734 |
d1.Add(datas[i],1)
|
735 |
datatitle=datatitle+ ' + '+datatyps[i]
|
736 |
print "\033[1;32m\n\tDATA integral = %s\033[1;m"%d1.Integral()
|
737 |
flow = d1.GetEntries()-d1.Integral()
|
738 |
if flow > 0:
|
739 |
print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
740 |
l.AddEntry(d1,datatitle,'PL')
|
741 |
allStack.SetTitle()
|
742 |
allStack.Draw("")
|
743 |
allStack.GetXaxis().SetTitle(title)
|
744 |
allStack.GetYaxis().SetTitle('Counts')
|
745 |
allStack.GetXaxis().SetRangeUser(xMin,xMax)
|
746 |
allStack.GetYaxis().SetRangeUser(0,20000)
|
747 |
Ymax = max(allStack.GetMaximum(),d1.GetMaximum())*1.2
|
748 |
allStack.SetMaximum(Ymax)
|
749 |
allStack.SetMinimum(0.1)
|
750 |
c.Update()
|
751 |
if config.get('Plot','logy') == '1':
|
752 |
ROOT.gPad.SetLogy()
|
753 |
ROOT.gPad.SetTicks(1,1)
|
754 |
allStack.Draw("")
|
755 |
d1.SetMarkerStyle(21)
|
756 |
d1.Draw("P0,E1,X0,same")
|
757 |
l.SetFillColor(0)
|
758 |
l.SetBorderSize(0)
|
759 |
l.Draw()
|
760 |
|
761 |
name = '%s/%s' %(config.get('Directories','plotpath'),options[6])
|
762 |
c.Print(name)
|
763 |
|
764 |
def treeCompare(path,var):
|
765 |
#*********************STACK*******************************
|
766 |
|
767 |
|
768 |
infofile = open(path+'/samples.info','r')
|
769 |
info = pickle.load(infofile)
|
770 |
infofile.close()
|
771 |
|
772 |
plot=config.get('Compare',var)
|
773 |
options = plot.split(',')
|
774 |
name=options[1]
|
775 |
title = options[2]
|
776 |
nBins=int(options[3])
|
777 |
xMin=float(options[4])
|
778 |
xMax=float(options[5])
|
779 |
|
780 |
|
781 |
bkgs=config.get('Compare','BKG')
|
782 |
bkgs=bkgs.split(' ')
|
783 |
|
784 |
sigs=config.get('Compare','SIG')
|
785 |
sigs=sigs.split(' ')
|
786 |
|
787 |
|
788 |
bkgsA = []
|
789 |
bkgsB = []
|
790 |
sigsA = []
|
791 |
sigsB = []
|
792 |
|
793 |
optionsA=copy(options)
|
794 |
optionsB=copy(options)
|
795 |
|
796 |
optionsA[7]=config.get('Compare','cutA')
|
797 |
optionsB[7]=config.get('Compare','cutB')
|
798 |
|
799 |
|
800 |
|
801 |
|
802 |
for job in info:
|
803 |
if job.name in bkgs:
|
804 |
hTemp, typ = getHistoFromTree2(job,optionsA)
|
805 |
bkgsA.append(hTemp)
|
806 |
hTemp, typ = getHistoFromTree2(job,optionsB)
|
807 |
bkgsB.append(hTemp)
|
808 |
if job.name in sigs:
|
809 |
hTemp, typ = getHistoFromTree2(job,optionsA)
|
810 |
sigsA.append(hTemp)
|
811 |
hTemp, typ = getHistoFromTree2(job,optionsB)
|
812 |
sigsB.append(hTemp)
|
813 |
|
814 |
|
815 |
ROOT.gROOT.SetStyle("Plain")
|
816 |
c = ROOT.TCanvas(name,title, 800, 600)
|
817 |
l = ROOT.TLegend(0.68, 0.7, 0.88, 0.88)
|
818 |
|
819 |
ROOT.gStyle.SetOptStat(0)
|
820 |
ROOT.gROOT.ForceStyle
|
821 |
|
822 |
for i in range(1,len(sigsA)):
|
823 |
sigsA[0].Add(sigsA[i])
|
824 |
sigsB[0].Add(sigsB[i])
|
825 |
|
826 |
|
827 |
for i in range(1,len(bkgsA)):
|
828 |
bkgsA[0].Add(bkgsA[i])
|
829 |
bkgsB[0].Add(bkgsB[i])
|
830 |
|
831 |
ScaleFactor=1/sigsA[0].Integral()
|
832 |
sigsA[0].Scale(ScaleFactor)
|
833 |
ScaleFactor=1/sigsB[0].Integral()
|
834 |
sigsB[0].Scale(ScaleFactor)
|
835 |
ScaleFactor=1/bkgsA[0].Integral()
|
836 |
bkgsA[0].Scale(ScaleFactor)
|
837 |
ScaleFactor=1/bkgsB[0].Integral()
|
838 |
bkgsB[0].Scale(ScaleFactor)
|
839 |
|
840 |
|
841 |
sigsA[0].SetLineColor(2)
|
842 |
sigsB[0].SetLineColor(1)
|
843 |
bkgsA[0].SetLineColor(4)
|
844 |
bkgsB[0].SetLineColor(1)
|
845 |
|
846 |
sigsA[0].SetFillColor(0)
|
847 |
sigsB[0].SetMarkerColor(2)
|
848 |
bkgsA[0].SetFillColor(0)
|
849 |
bkgsB[0].SetMarkerColor(4)
|
850 |
|
851 |
|
852 |
sigsA[0].SetLineWidth(2)
|
853 |
sigsB[0].SetLineWidth(1)
|
854 |
bkgsA[0].SetLineWidth(2)
|
855 |
bkgsB[0].SetLineWidth(1)
|
856 |
|
857 |
|
858 |
sigsA[0].SetFillStyle(3000)
|
859 |
sigsB[0].SetFillStyle(3345)
|
860 |
bkgsA[0].SetFillStyle(3000)
|
861 |
bkgsB[0].SetFillStyle(3354)
|
862 |
|
863 |
l.AddEntry(sigsA[0],'SIG %s'%optionsA[7],'L')
|
864 |
l.AddEntry(sigsB[0],'SIG %s'%optionsB[7],'PL')
|
865 |
l.AddEntry(bkgsA[0],'BKG %s'%optionsA[7],'L')
|
866 |
l.AddEntry(bkgsB[0],'BKG %s'%optionsB[7],'PL')
|
867 |
|
868 |
|
869 |
maximum=max(sigsA[0].GetMaximum(),sigsB[0].GetMaximum(),bkgsA[0].GetMaximum(),bkgsB[0].GetMaximum())
|
870 |
|
871 |
|
872 |
sigsA[0].SetTitle("Comparison EE/MM")
|
873 |
sigsA[0].Draw("hist")
|
874 |
sigsA[0].GetXaxis().SetTitle(title)
|
875 |
sigsA[0].GetYaxis().SetTitle('Normalized Scale')
|
876 |
sigsA[0].GetXaxis().SetRangeUser(xMin,xMax)
|
877 |
sigsA[0].GetYaxis().SetRangeUser(0,maximum*1.1)
|
878 |
#c.Update()
|
879 |
#if config.get('Plot','logy') == '1':
|
880 |
# ROOT.gPad.SetLogy()
|
881 |
ROOT.gPad.SetTicks(1,1)
|
882 |
|
883 |
|
884 |
l.SetFillColor(0)
|
885 |
l.SetBorderSize(0)
|
886 |
l.Draw()
|
887 |
print sigsA[0].GetEntries()
|
888 |
print sigsB[0].GetEntries()
|
889 |
print bkgsA[0].GetEntries()
|
890 |
print bkgsB[0].GetEntries()
|
891 |
|
892 |
|
893 |
sigsA[0].Draw("hist,same")
|
894 |
sigsB[0].SetMarkerStyle(21)
|
895 |
#sigsB[0].Sumw2()
|
896 |
sigsB[0].Draw("P0,same")
|
897 |
bkgsA[0].Draw("hist,same")
|
898 |
bkgsB[0].SetMarkerStyle(21)
|
899 |
#bkgsB[0].Sumw2()
|
900 |
bkgsB[0].Draw("P0,same")
|
901 |
|
902 |
|
903 |
|
904 |
|
905 |
name = '%s/%s' %(config.get('Directories','plotpath'),options[6])
|
906 |
c.Print(name)
|
907 |
|
908 |
#NEW TRAINING
|
909 |
def newTraining(run,gui):
|
910 |
|
911 |
#CONFIG
|
912 |
#factory
|
913 |
factoryname=config.get('factory','factoryname')
|
914 |
factorysettings=config.get('factory','factorysettings')
|
915 |
#MVA
|
916 |
MVAtype=config.get(run,'MVAtype')
|
917 |
MVAname=config.get(run,'MVAname')
|
918 |
MVAsettings=config.get(run,'MVAsettings')
|
919 |
fnameOutput = Wdir +'/weights/'+factoryname+'_'+MVAname+'.root'
|
920 |
#locations
|
921 |
Tpath=config.get(run,'Tpath')
|
922 |
Epath=config.get(run,'Epath')
|
923 |
|
924 |
#signals
|
925 |
signals=config.get(run,'signals')
|
926 |
signals=signals.split(' ')
|
927 |
#backgrounds
|
928 |
backgrounds=config.get(run,'backgrounds')
|
929 |
backgrounds=backgrounds.split(' ')
|
930 |
|
931 |
treeVarSet=config.get(run,'treeVarSet')
|
932 |
|
933 |
#variables
|
934 |
#TreeVar Array
|
935 |
MVA_Vars={}
|
936 |
MVA_Vars['Nominal']=config.get(treeVarSet,'Nominal')
|
937 |
MVA_Vars['Nominal']=MVA_Vars['Nominal'].split(' ')
|
938 |
#Spectators:
|
939 |
spectators=config.get(treeVarSet,'spectators')
|
940 |
spectators=spectators.split(' ')
|
941 |
|
942 |
#TRAINING samples
|
943 |
infofile = open(Tpath+'/samples.info','r')
|
944 |
Tinfo = pickle.load(infofile)
|
945 |
infofile.close()
|
946 |
|
947 |
#Evaluate samples
|
948 |
infofile = open(Epath+'/samples.info','r')
|
949 |
Einfo = pickle.load(infofile)
|
950 |
infofile.close()
|
951 |
|
952 |
#Workdir
|
953 |
workdir=ROOT.gDirectory.GetPath()
|
954 |
|
955 |
|
956 |
#load TRAIN trees
|
957 |
Tbackgrounds = []
|
958 |
TbScales = []
|
959 |
Tsignals = []
|
960 |
TsScales = []
|
961 |
|
962 |
for job in Tinfo:
|
963 |
if job.name in signals:
|
964 |
Tsignal = getTree2(job)
|
965 |
ROOT.gDirectory.Cd(workdir)
|
966 |
TsScale = getScale2(job)
|
967 |
Tsignals.append(Tsignal)
|
968 |
TsScales.append(TsScale)
|
969 |
|
970 |
if job.name in backgrounds:
|
971 |
Tbackground = getTree2(job)
|
972 |
ROOT.gDirectory.Cd(workdir)
|
973 |
TbScale = getScale2(job)
|
974 |
Tbackgrounds.append(Tbackground)
|
975 |
TbScales.append(TbScale)
|
976 |
|
977 |
#load EVALUATE trees
|
978 |
Ebackgrounds = []
|
979 |
EbScales = []
|
980 |
Esignals = []
|
981 |
EsScales = []
|
982 |
|
983 |
for job in Einfo:
|
984 |
if job.name in signals:
|
985 |
Esignal = getTree2(job)
|
986 |
ROOT.gDirectory.Cd(workdir)
|
987 |
EsScale = getScale2(job)
|
988 |
Esignals.append(Esignal)
|
989 |
EsScales.append(EsScale)
|
990 |
|
991 |
if job.name in backgrounds:
|
992 |
Ebackground = getTree2(job)
|
993 |
ROOT.gDirectory.Cd(workdir)
|
994 |
EbScale = getScale2(job)
|
995 |
Ebackgrounds.append(Ebackground)
|
996 |
EbScales.append(EbScale)
|
997 |
|
998 |
output = ROOT.TFile.Open(fnameOutput, "RECREATE")
|
999 |
factory = ROOT.TMVA.Factory(factoryname, output, factorysettings)
|
1000 |
|
1001 |
#set input trees
|
1002 |
for i in range(len(Tsignals)):
|
1003 |
|
1004 |
factory.AddSignalTree(Tsignals[i], TsScales[i], ROOT.TMVA.Types.kTraining)
|
1005 |
factory.AddSignalTree(Esignals[i], EsScales[i], ROOT.TMVA.Types.kTesting)
|
1006 |
|
1007 |
for i in range(len(Tbackgrounds)):
|
1008 |
if (Tbackgrounds[i].GetEntries()>0):
|
1009 |
factory.AddBackgroundTree(Tbackgrounds[i], TbScales[i], ROOT.TMVA.Types.kTraining)
|
1010 |
|
1011 |
if (Ebackgrounds[i].GetEntries()>0):
|
1012 |
factory.AddBackgroundTree(Ebackgrounds[i], EbScales[i], ROOT.TMVA.Types.kTesting)
|
1013 |
|
1014 |
|
1015 |
for var in MVA_Vars['Nominal']:
|
1016 |
factory.AddVariable(var,'D') # add the variables
|
1017 |
for var in spectators:
|
1018 |
factory.AddSpectator(var,'D') #add specators
|
1019 |
|
1020 |
#Execute TMVA
|
1021 |
factory.SetSignalWeightExpression(weightF)
|
1022 |
factory.Verbose()
|
1023 |
factory.BookMethod(MVAtype,MVAname,MVAsettings)
|
1024 |
factory.TrainAllMethods()
|
1025 |
factory.TestAllMethods()
|
1026 |
factory.EvaluateAllMethods()
|
1027 |
output.Write()
|
1028 |
|
1029 |
#WRITE INFOFILE
|
1030 |
infofile = open(Wdir+'/weights/'+factoryname+'_'+MVAname+'.info','w')
|
1031 |
info=mvainfo(MVAname)
|
1032 |
info.factoryname=factoryname
|
1033 |
info.factorysettings=factorysettings
|
1034 |
info.MVAtype=MVAtype
|
1035 |
info.MVAsettings=MVAsettings
|
1036 |
info.weightfilepath=Wdir+'/weights'
|
1037 |
info.Tpath=Tpath
|
1038 |
info.Epath=Epath
|
1039 |
info.varset=treeVarSet
|
1040 |
info.vars=MVA_Vars['Nominal']
|
1041 |
info.spectators=spectators
|
1042 |
pickle.dump(info,infofile)
|
1043 |
infofile.close()
|
1044 |
|
1045 |
# open the TMVA Gui
|
1046 |
if gui == 'gui':
|
1047 |
ROOT.gROOT.ProcessLine( ".L TMVAGui.C")
|
1048 |
ROOT.gROOT.ProcessLine( "TMVAGui(\"%s\")" % fnameOutput )
|
1049 |
ROOT.gApplication.Run()
|
1050 |
|
1051 |
|
1052 |
#*********************EVALUATE*******************************
|
1053 |
def evaluate(run,Apath): #fnameOutput='training.root', split=0.5
|
1054 |
|
1055 |
#CONFIG
|
1056 |
#factory
|
1057 |
factoryname=config.get('factory','factoryname')
|
1058 |
#MVA
|
1059 |
MVAname=config.get(run,'MVAname')
|
1060 |
#print Wdir+'/weights/'+factoryname+'_'+MVAname+'.info'
|
1061 |
MVAinfofile = open(Wdir+'/weights/'+factoryname+'_'+MVAname+'.info','r')
|
1062 |
MVAinfo = pickle.load(MVAinfofile)
|
1063 |
treeVarSet=MVAinfo.varset
|
1064 |
#variables
|
1065 |
#TreeVar Array
|
1066 |
MVA_Vars={}
|
1067 |
for systematic in systematics:
|
1068 |
MVA_Vars[systematic]=config.get(treeVarSet,systematic)
|
1069 |
MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
|
1070 |
#Spectators:
|
1071 |
spectators=config.get(treeVarSet,'spectators')
|
1072 |
spectators=spectators.split(' ')
|
1073 |
#progbar quatsch
|
1074 |
longe=40
|
1075 |
#Workdir
|
1076 |
workdir=ROOT.gDirectory.GetPath()
|
1077 |
|
1078 |
os.mkdir(Apath+'/'+run)
|
1079 |
|
1080 |
|
1081 |
#Book TMVA readers: MVAlist=["MMCC_bla","CC5050_bla"]
|
1082 |
reader=ROOT.TMVA.Reader("!Color:!Silent" )
|
1083 |
|
1084 |
#define variables and specatators
|
1085 |
MVA_var_buffer = []
|
1086 |
for i in range(len( MVA_Vars['Nominal'])):
|
1087 |
MVA_var_buffer.append(array( 'f', [ 0 ] ))
|
1088 |
reader.AddVariable( MVA_Vars['Nominal'][i],MVA_var_buffer[i])
|
1089 |
MVA_spectator_buffer = []
|
1090 |
for i in range(len(spectators)):
|
1091 |
MVA_spectator_buffer.append(array( 'f', [ 0 ] ))
|
1092 |
reader.AddSpectator(spectators[i],MVA_spectator_buffer[i])
|
1093 |
#Load raeder
|
1094 |
reader.BookMVA(MVAinfo.MVAname,MVAinfo.getweightfile())
|
1095 |
#--> Now the MVA is booked
|
1096 |
|
1097 |
#Apply samples
|
1098 |
infofile = open(Apath+'/samples.info','r')
|
1099 |
Ainfo = pickle.load(infofile)
|
1100 |
infofile.close()
|
1101 |
|
1102 |
#eval
|
1103 |
for job in Ainfo:
|
1104 |
job.addcomment('Added MVA %s'%MVAinfo.MVAname)
|
1105 |
#MCs
|
1106 |
|
1107 |
|
1108 |
|
1109 |
|
1110 |
input = TFile.Open(job.getpath(),'read')
|
1111 |
Count = input.Get("Count")
|
1112 |
CountWithPU = input.Get("CountWithPU")
|
1113 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
1114 |
tree = input.Get(job.tree)
|
1115 |
nEntries = tree.GetEntries()
|
1116 |
|
1117 |
|
1118 |
|
1119 |
|
1120 |
#tree = getTree2(job)
|
1121 |
ROOT.gDirectory.Cd(workdir)
|
1122 |
#nEntries=tree.GetEntries()
|
1123 |
|
1124 |
|
1125 |
|
1126 |
|
1127 |
if job.type != 'DATA':
|
1128 |
|
1129 |
|
1130 |
MVA_formulas={}
|
1131 |
for systematic in systematics:
|
1132 |
#print '\t\t - ' + systematic
|
1133 |
MVA_formulas[systematic]=[]
|
1134 |
#create TTreeFormulas
|
1135 |
for j in range(len( MVA_Vars['Nominal'])):
|
1136 |
MVA_formulas[systematic].append(ROOT.TTreeFormula("MVA_formula%s_%s"%(j,systematic),MVA_Vars[systematic][j],tree))
|
1137 |
job.addpath('/%s'%run)
|
1138 |
outfile = ROOT.TFile(job.getpath(), 'RECREATE')
|
1139 |
newtree = tree.CloneTree(0)
|
1140 |
#Setup Branches
|
1141 |
MVA = array('f',[0]*9)
|
1142 |
newtree.Branch(MVAinfo.MVAname,MVA,'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
|
1143 |
print '\n--> ' + job.name +':'
|
1144 |
#progbar setup
|
1145 |
if nEntries >= longe:
|
1146 |
step=int(nEntries/longe)
|
1147 |
long=longe
|
1148 |
else:
|
1149 |
long=nEntries
|
1150 |
step = 1
|
1151 |
bar=progbar(long)
|
1152 |
|
1153 |
#Fill event by event:
|
1154 |
for entry in range(0,nEntries):
|
1155 |
if entry % step == 0:
|
1156 |
bar.move()
|
1157 |
#load entry
|
1158 |
tree.GetEntry(entry)
|
1159 |
for systematic in systematics:
|
1160 |
for j in range(len( MVA_Vars['Nominal'])):
|
1161 |
MVA_var_buffer[j][0] = MVA_formulas[systematic][j].EvalInstance()
|
1162 |
MVA[systematics.index(systematic)] = reader.EvaluateMVA(MVAinfo.MVAname)
|
1163 |
#Fill:
|
1164 |
newtree.Fill()
|
1165 |
|
1166 |
newtree.Write()
|
1167 |
newtree.Write()
|
1168 |
Count.Write()
|
1169 |
CountWithPU.Write()
|
1170 |
CountWithPU2011B.Write()
|
1171 |
outfile.Close()
|
1172 |
|
1173 |
#DATA
|
1174 |
if job.type == 'DATA':
|
1175 |
|
1176 |
#MVA Formulas
|
1177 |
MVA_formulas_Nominal = []
|
1178 |
#create TTreeFormulas
|
1179 |
for j in range(len( MVA_Vars['Nominal'])):
|
1180 |
MVA_formulas_Nominal.append(ROOT.TTreeFormula("MVA_formula%s_Nominal"%j, MVA_Vars['Nominal'][j],tree))
|
1181 |
job.addpath('/%s'%run)
|
1182 |
outfile = ROOT.TFile(job.getpath(), 'RECREATE')
|
1183 |
newtree = tree.CloneTree(0)
|
1184 |
#Setup Branches
|
1185 |
MVA = array('f',[0])
|
1186 |
newtree.Branch(MVAinfo.MVAname,MVA,'nominal/F')
|
1187 |
#progbar
|
1188 |
print '\n--> ' + job.name +':'
|
1189 |
if nEntries >= longe:
|
1190 |
step=int(nEntries/longe)
|
1191 |
long=longe
|
1192 |
else:
|
1193 |
long=nEntries
|
1194 |
step = 1
|
1195 |
bar=progbar(long)
|
1196 |
|
1197 |
#Fill event by event:
|
1198 |
for entry in range(0,nEntries):
|
1199 |
if entry % step == 0:
|
1200 |
bar.move()
|
1201 |
#load entry
|
1202 |
tree.GetEntry(entry)
|
1203 |
#nominal:
|
1204 |
for j in range(len( MVA_Vars['Nominal'])):
|
1205 |
MVA_var_buffer[j][0] = MVA_formulas_Nominal[j].EvalInstance()
|
1206 |
MVA[0]= discr = reader.EvaluateMVA(MVAinfo.MVAname)
|
1207 |
newtree.Fill()
|
1208 |
newtree.Write()
|
1209 |
newtree.Write()
|
1210 |
Count.Write()
|
1211 |
CountWithPU.Write()
|
1212 |
CountWithPU2011B.Write()
|
1213 |
outfile.Close()
|
1214 |
|
1215 |
print '\n'
|
1216 |
infofile = open(Apath+'/'+run+'/samples.info','w')
|
1217 |
pickle.dump(Ainfo,infofile)
|
1218 |
infofile.close()
|
1219 |
|
1220 |
######################
|
1221 |
#Evaluate multi: Must Have same treeVars!!!
|
1222 |
def evalMulti(Apath,arglist): #fnameOutput='training.root', split=0.5
|
1223 |
MVAlist=arglist.split(',')
|
1224 |
|
1225 |
#CONFIG
|
1226 |
#factory
|
1227 |
factoryname=config.get('factory','factoryname')
|
1228 |
#MVA
|
1229 |
MVAnames=[]
|
1230 |
for MVA in MVAlist:
|
1231 |
print MVA
|
1232 |
MVAnames.append(config.get(MVA,'MVAname'))
|
1233 |
#print Wdir+'/weights/'+factoryname+'_'+MVAname+'.info'
|
1234 |
#MVAinfofiles=[]
|
1235 |
MVAinfos=[]
|
1236 |
for MVAname in MVAnames:
|
1237 |
MVAinfofile = open(Wdir+'/weights/'+factoryname+'_'+MVAname+'.info','r')
|
1238 |
MVAinfos.append(pickle.load(MVAinfofile))
|
1239 |
MVAinfofile.close()
|
1240 |
|
1241 |
treeVarSet=MVAinfos[0].varset
|
1242 |
#variables
|
1243 |
#TreeVar Array
|
1244 |
MVA_Vars={}
|
1245 |
for systematic in systematics:
|
1246 |
MVA_Vars[systematic]=config.get(treeVarSet,systematic)
|
1247 |
MVA_Vars[systematic]=MVA_Vars[systematic].split(' ')
|
1248 |
#Spectators:
|
1249 |
spectators=config.get(treeVarSet,'spectators')
|
1250 |
spectators=spectators.split(' ')
|
1251 |
#progbar quatsch
|
1252 |
longe=40
|
1253 |
#Workdir
|
1254 |
workdir=ROOT.gDirectory.GetPath()
|
1255 |
os.mkdir(Apath+'/MVAout')
|
1256 |
|
1257 |
#Book TMVA readers: MVAlist=["MMCC_bla","CC5050_bla"]
|
1258 |
readers=[]
|
1259 |
for MVA in MVAlist:
|
1260 |
readers.append(ROOT.TMVA.Reader("!Color:!Silent"))
|
1261 |
|
1262 |
#define variables and specatators
|
1263 |
MVA_var_buffer = []
|
1264 |
for i in range(len( MVA_Vars['Nominal'])):
|
1265 |
MVA_var_buffer.append(array( 'f', [ 0 ] ))
|
1266 |
for reader in readers:
|
1267 |
reader.AddVariable( MVA_Vars['Nominal'][i],MVA_var_buffer[i])
|
1268 |
MVA_spectator_buffer = []
|
1269 |
for i in range(len(spectators)):
|
1270 |
MVA_spectator_buffer.append(array( 'f', [ 0 ] ))
|
1271 |
for reader in readers:
|
1272 |
reader.AddSpectator(spectators[i],MVA_spectator_buffer[i])
|
1273 |
#Load raeder
|
1274 |
for i in range(0,len(readers)):
|
1275 |
readers[i].BookMVA(MVAinfos[i].MVAname,MVAinfos[i].getweightfile())
|
1276 |
#--> Now the MVA is booked
|
1277 |
|
1278 |
#Apply samples
|
1279 |
infofile = open(Apath+'/samples.info','r')
|
1280 |
Ainfo = pickle.load(infofile)
|
1281 |
infofile.close()
|
1282 |
|
1283 |
#eval
|
1284 |
for job in Ainfo:
|
1285 |
for MVAinfo in MVAinfos:
|
1286 |
job.addcomment('Added MVA %s'%MVAinfo.MVAname)
|
1287 |
#MCs
|
1288 |
|
1289 |
input = TFile.Open(job.getpath(),'read')
|
1290 |
Count = input.Get("Count")
|
1291 |
CountWithPU = input.Get("CountWithPU")
|
1292 |
CountWithPU2011B = input.Get("CountWithPU2011B")
|
1293 |
tree = input.Get(job.tree)
|
1294 |
nEntries = tree.GetEntries()
|
1295 |
|
1296 |
#tree = getTree2(job)
|
1297 |
ROOT.gDirectory.Cd(workdir)
|
1298 |
#nEntries=tree.GetEntries()
|
1299 |
|
1300 |
if job.type != 'DATA':
|
1301 |
|
1302 |
MVA_formulas={}
|
1303 |
for systematic in systematics:
|
1304 |
#print '\t\t - ' + systematic
|
1305 |
MVA_formulas[systematic]=[]
|
1306 |
#create TTreeFormulas
|
1307 |
for j in range(len( MVA_Vars['Nominal'])):
|
1308 |
MVA_formulas[systematic].append(ROOT.TTreeFormula("MVA_formula%s_%s"%(j,systematic),MVA_Vars[systematic][j],tree))
|
1309 |
job.addpath('/MVAout')
|
1310 |
outfile = ROOT.TFile(job.getpath(), 'RECREATE')
|
1311 |
newtree = tree.CloneTree(0)
|
1312 |
#Setup Branches
|
1313 |
MVAbranches=[]
|
1314 |
for i in range(0,len(readers)):
|
1315 |
MVAbranches.append(array('f',[0]*9))
|
1316 |
newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal:JER_up:JER_down:JES_up:JES_down:beff_up:beff_down:bmis_up:bmis_down/F')
|
1317 |
print '\n--> ' + job.name +':'
|
1318 |
#progbar setup
|
1319 |
if nEntries >= longe:
|
1320 |
step=int(nEntries/longe)
|
1321 |
long=longe
|
1322 |
else:
|
1323 |
long=nEntries
|
1324 |
step = 1
|
1325 |
bar=progbar(long)
|
1326 |
|
1327 |
#Fill event by event:
|
1328 |
for entry in range(0,nEntries):
|
1329 |
if entry % step == 0:
|
1330 |
bar.move()
|
1331 |
#load entry
|
1332 |
tree.GetEntry(entry)
|
1333 |
for systematic in systematics:
|
1334 |
for j in range(len( MVA_Vars['Nominal'])):
|
1335 |
MVA_var_buffer[j][0] = MVA_formulas[systematic][j].EvalInstance()
|
1336 |
|
1337 |
for j in range(0,len(readers)):
|
1338 |
MVAbranches[j][systematics.index(systematic)] = readers[j].EvaluateMVA(MVAinfos[j].MVAname)
|
1339 |
#Fill:
|
1340 |
newtree.Fill()
|
1341 |
|
1342 |
newtree.Write()
|
1343 |
newtree.Write()
|
1344 |
Count.Write()
|
1345 |
CountWithPU.Write()
|
1346 |
CountWithPU2011B.Write()
|
1347 |
outfile.Close()
|
1348 |
|
1349 |
#DATA
|
1350 |
if job.type == 'DATA':
|
1351 |
|
1352 |
#MVA Formulas
|
1353 |
MVA_formulas_Nominal = []
|
1354 |
#create TTreeFormulas
|
1355 |
for j in range(len( MVA_Vars['Nominal'])):
|
1356 |
MVA_formulas_Nominal.append(ROOT.TTreeFormula("MVA_formula%s_Nominal"%j, MVA_Vars['Nominal'][j],tree))
|
1357 |
job.addpath('/MVAout')
|
1358 |
outfile = ROOT.TFile(job.getpath(), 'RECREATE')
|
1359 |
newtree = tree.CloneTree(0)
|
1360 |
#Setup Branches
|
1361 |
MVAbranches=[]
|
1362 |
for i in range(0,len(readers)):
|
1363 |
|
1364 |
MVAbranches.append(array('f',[0]))
|
1365 |
newtree.Branch(MVAinfos[i].MVAname,MVAbranches[i],'nominal/F')
|
1366 |
#progbar
|
1367 |
print '\n--> ' + job.name +':'
|
1368 |
if nEntries >= longe:
|
1369 |
step=int(nEntries/longe)
|
1370 |
long=longe
|
1371 |
else:
|
1372 |
long=nEntries
|
1373 |
step = 1
|
1374 |
bar=progbar(long)
|
1375 |
|
1376 |
#Fill event by event:
|
1377 |
for entry in range(0,nEntries):
|
1378 |
if entry % step == 0:
|
1379 |
bar.move()
|
1380 |
#load entry
|
1381 |
tree.GetEntry(entry)
|
1382 |
#nominal:
|
1383 |
for j in range(len( MVA_Vars['Nominal'])):
|
1384 |
MVA_var_buffer[j][0] = MVA_formulas_Nominal[j].EvalInstance()
|
1385 |
|
1386 |
for j in range(0,len(readers)):
|
1387 |
MVAbranches[j][0]= readers[j].EvaluateMVA(MVAinfos[j].MVAname)
|
1388 |
|
1389 |
|
1390 |
newtree.Fill()
|
1391 |
newtree.Write()
|
1392 |
newtree.Write()
|
1393 |
Count.Write()
|
1394 |
CountWithPU.Write()
|
1395 |
CountWithPU2011B.Write()
|
1396 |
outfile.Close()
|
1397 |
|
1398 |
print '\n'
|
1399 |
infofile = open(Apath+'/MVAout/samples.info','w')
|
1400 |
pickle.dump(Ainfo,infofile)
|
1401 |
infofile.close()
|
1402 |
|
1403 |
|
1404 |
def Limit(path,var,data):
|
1405 |
print data
|
1406 |
|
1407 |
|
1408 |
plot=config.get('Limit',var)
|
1409 |
|
1410 |
infofile = open(path+'/samples.info','r')
|
1411 |
info = pickle.load(infofile)
|
1412 |
infofile.close()
|
1413 |
|
1414 |
options = plot.split(',')
|
1415 |
|
1416 |
|
1417 |
name=options[1]
|
1418 |
title = options[2]
|
1419 |
nBins=int(options[3])
|
1420 |
xMin=float(options[4])
|
1421 |
xMax=float(options[5])
|
1422 |
|
1423 |
setup=config.get('Plot','setup')
|
1424 |
setup=setup.split(',')
|
1425 |
|
1426 |
|
1427 |
ROOToutname = options[6]
|
1428 |
|
1429 |
|
1430 |
outpath=config.get('Directories','limits')
|
1431 |
|
1432 |
|
1433 |
outfile = ROOT.TFile(outpath+ROOToutname+'.root', 'RECREATE')
|
1434 |
#Spuck out se Histograms for se Comination tool
|
1435 |
discr_names = ['Zudscg', 'Zbb', 'TTbar','VV', 'ST', 'Sig115', 'Wudscg', 'Wbb', 'QCD']
|
1436 |
data_name = ['data_obs']
|
1437 |
|
1438 |
|
1439 |
|
1440 |
|
1441 |
histos = []
|
1442 |
typs = []
|
1443 |
datas = []
|
1444 |
datatyps =[]
|
1445 |
|
1446 |
for job in info:
|
1447 |
print job.name
|
1448 |
if job.type != 'DATA':
|
1449 |
print 'MC'
|
1450 |
hTemp, typ = getHistoFromTree2(job,options)
|
1451 |
histos.append(hTemp)
|
1452 |
typs.append(typ)
|
1453 |
elif job.name in data:
|
1454 |
print 'DATA'
|
1455 |
hTemp, typ = getHistoFromTree2(job,options)
|
1456 |
datas.append(hTemp)
|
1457 |
datatyps.append(typ)
|
1458 |
|
1459 |
|
1460 |
|
1461 |
|
1462 |
ROOT.gROOT.SetStyle("Plain")
|
1463 |
c = ROOT.TCanvas(name,title, 800, 600)
|
1464 |
MC_integral=0
|
1465 |
MC_entries=0
|
1466 |
|
1467 |
for histo in histos:
|
1468 |
MC_integral+=histo.Integral()
|
1469 |
#MC_entries+=histo.GetEntries()
|
1470 |
print "\033[1;32m\n\tMC integral = %s\033[1;m"%MC_integral
|
1471 |
#flow = MC_entries-MC_integral
|
1472 |
#if flow > 0:
|
1473 |
# print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
1474 |
|
1475 |
#ORDER AND ADD TOGETHER
|
1476 |
|
1477 |
ordnung=[]
|
1478 |
ordnungtyp=[]
|
1479 |
num=[0]*len(setup)
|
1480 |
for i in range(0,len(setup)):
|
1481 |
for j in range(0,len(histos)):
|
1482 |
if typs[j] == setup[i]:
|
1483 |
num[i]+=1
|
1484 |
ordnung.append(histos[j])
|
1485 |
ordnungtyp.append(typs[j])
|
1486 |
|
1487 |
del histos
|
1488 |
del typs
|
1489 |
|
1490 |
histos=ordnung
|
1491 |
typs=ordnungtyp
|
1492 |
|
1493 |
for k in range(0,len(num)):
|
1494 |
for m in range(0,num[k]):
|
1495 |
if m > 0:
|
1496 |
histos[k].Add(histos[k+1],1)
|
1497 |
del histos[k+1]
|
1498 |
del typs[k+1]
|
1499 |
|
1500 |
|
1501 |
|
1502 |
d1 = ROOT.TH1F('d1','d1',nBins,xMin,xMax)
|
1503 |
|
1504 |
for i in range(0,len(datas)):
|
1505 |
d1.Add(datas[i],1)
|
1506 |
print "\033[1;32m\n\tDATA integral = %s\033[1;m"%d1.Integral()
|
1507 |
flow = d1.GetEntries()-d1.Integral()
|
1508 |
if flow > 0:
|
1509 |
print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
1510 |
|
1511 |
|
1512 |
|
1513 |
for i in range(0,len(histos)):
|
1514 |
histos[i].SetName(discr_names[i])
|
1515 |
histos[i].SetDirectory(outfile)
|
1516 |
histos[i].Draw()
|
1517 |
print discr_names[i]
|
1518 |
print histos[i].Integral(0,nBins)
|
1519 |
|
1520 |
|
1521 |
#datas[0]: data_obs
|
1522 |
d1.SetName(data_name[0])
|
1523 |
d1.SetDirectory(outfile)
|
1524 |
print data_name[0]
|
1525 |
print d1.Integral(0,nBins)
|
1526 |
print d1.Integral()
|
1527 |
print d1.GetEntries()
|
1528 |
|
1529 |
#write DATAcard
|
1530 |
f = open(outpath+'/vhbb_%s.txt'%ROOToutname,'w')
|
1531 |
f.write('imax\t1\tnumber of channels\njmax\t8\tnumber of backgrounds (\'*\' = automatic)\nkmax\t*\tnumber of nuisance parameters (sources of systematical uncertainties)\n\n')
|
1532 |
f.write('shapes * * %s.root $PROCESS $PROCESS$SYSTEMATIC\n\nbin\tZee\n\n'%ROOToutname)
|
1533 |
f.write('observation\t%s\n\n\n' %(d1.Integral()))
|
1534 |
f.write('bin\tZee\tZee\tZee\tZee\tZee\tZee\tZee\tZee\tZee\n')
|
1535 |
f.write('process\tSig115\tWudscg\tWbb\tZudscg\tZbb\tTTbar\tST\tVV\tQCD\n')
|
1536 |
f.write('process\t0\t1\t2\t3\t4\t5\t6\t7\t8\n')
|
1537 |
f.write('rate\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n\n' %(histos[5].Integral(),0,0,histos[0].Integral(),histos[1].Integral(),histos[2].Integral(),histos[4].Integral(),histos[3].Integral(),0)) #\t1.918\t0.000 0.000\t135.831 117.86 18.718 1.508\t7.015\t0.000
|
1538 |
f.write('lumi\tlnN\t1.045\t-\t-\t-\t-\t-\t1.045\t1.045\t1.045\npdf_qqbar\tlnN\t1.01\t-\t-\t-\t-\t-\t-\t1.01\t-\npdf_gg\tlnN\t-\t-\t-\t-\t-\t-\t1.01\t-\t1.01\nQCDscale_VH\tlnN\t1.04\t-\t-\t-\t-\t-\t-\t-\t-\nQCDscale_ttbar\tlnN\t-\t-\t-\t-\t-\t-\t1.06\t-\t-\nQCDscale_VV\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.04\t-\nQCDscale_QCD\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t1.30\nCMS_vhbb_boost_EWK\tlnN\t1.05\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_boost_QCD\tlnN\t1.10\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_ST\tlnN\t-\t-\t-\t-\t-\t-\t1.29\t-\t-\nCMS_vhbb__VV\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.30\t-\nCMS_vhbb_WjLF_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_WjHF_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_ZjLF_SF\tlnN\t-\t-\t-\t1.06\t-\t-\t-\t-\t-\nCMS_vhbb_ZjHF_SF\tlnN\t-\t-\t-\t-\t1.17\t-\t-\t-\t-\nCMS_vhbb_TT_SF\tlnN\t-\t-\t-\t-\t-\t1.14\t-\t-\t-\nCMS_vhbb_QCD_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_trigger_m\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_trigger_e\tlnN\t1.02\t-\t-\t-\t-\t-\t1.02\t1.02\t-\n')
|
1539 |
f.write('CMS_vhbb_trigger_MET\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_eff_m\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_eff_e\tlnN\t1.04\t-\t-\t-\t-\t-\t1.04\t1.04\t1.04\nCMS_toteff_b\tlnN\t1.10\t1.10\t1.00\t1.10\t1.00\t1.10\t1.10\t1.10\t1.10\nCMS_totscale_j\tlnN\t1.02\t-\t-\t-\t-\t-\t1.02\t1.02\t-\nCMS_totres_j\tlnN\t1.05\t1.03\t1.03\t1.03\t1.03\t1.03\t1.03\t1.05\t-\nCMS_vhbb_MET_nojets\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VH_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjLF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjHF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhb_stats_ZjLF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_ZjHF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_TT_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_sT_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VV_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_QCD_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1540 |
f.write('CMS_vhbb_stats_WjLF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjHF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhb_stats_ZjLF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_ZjHF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_TT_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_sT_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VV_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_QCD_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VH_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjLF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjHF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhb_stats_ZjLF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_ZjHF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_TT_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_sT_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VV_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_QCD_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VH_Zee\tlnN\t1.03\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjLF_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjHF_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhb_stats_ZjLF_Zee\tlnN\t-\t-\t-\t1.05\t-\t-\t-\t-\t-\nCMS_vhbb_stats_ZjHF_Zee\tlnN\t-\t-\t-\t-\t1.07\t-\t-\t-\t-\nCMS_vhbb_stats_TT_Zee\tlnN\t-\t-\t-\t-\t-\t1.06\t-\t-\t-\nCMS_vhbb_stats_sT_Zee\tlnN\t-\t-\t-\t-\t-\t-\t1.30\t-\t-\nCMS_vhbb_stats_Diboson_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.06\t-\nCMS_vhbb_stats_QCD_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VH_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjLF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_WjHF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhb_stats_ZjLF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_ZjHF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_TT_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_sT_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_VV_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\nCMS_vhbb_stats_QCD_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1541 |
f.close()
|
1542 |
|
1543 |
#dunnmies
|
1544 |
dummies=[]
|
1545 |
#Wlight,Wbb,QCD
|
1546 |
for i in range(6,9):
|
1547 |
dummy = ROOT.TH1F(discr_names[i], "discriminator", nBins, xMin, xMax)
|
1548 |
dummy.SetDirectory(outfile)
|
1549 |
dummy.Draw()
|
1550 |
dummies.append(dummy)
|
1551 |
print discr_names[i]
|
1552 |
#Wbb
|
1553 |
#dummy = ROOT.TH1F(discr_names[7], "discriminator", div, discrMin, discrMax)
|
1554 |
#dummies.append(dummy)
|
1555 |
#QCD
|
1556 |
#dummy = ROOT.TH1F(discr_names[8], "discriminator", div, discrMin, discrMax)
|
1557 |
#dummies.append(dummy)
|
1558 |
|
1559 |
#Write to file
|
1560 |
outfile.Write()
|
1561 |
outfile.Close()
|
1562 |
|
1563 |
|
1564 |
def writeWorkspace(path,var,data):
|
1565 |
|
1566 |
|
1567 |
plot=config.get('Limit',var)
|
1568 |
|
1569 |
infofile = open(path+'/samples.info','r')
|
1570 |
info = pickle.load(infofile)
|
1571 |
infofile.close()
|
1572 |
|
1573 |
options = plot.split(',')
|
1574 |
|
1575 |
|
1576 |
name=options[1]
|
1577 |
title = options[2]
|
1578 |
nBins=int(options[3])
|
1579 |
xMin=float(options[4])
|
1580 |
xMax=float(options[5])
|
1581 |
|
1582 |
setup=config.get('Plot','setup')
|
1583 |
setup=setup.split(',')
|
1584 |
|
1585 |
|
1586 |
ROOToutname = options[6]
|
1587 |
|
1588 |
|
1589 |
outpath=config.get('Directories','limits')
|
1590 |
|
1591 |
|
1592 |
outfile = ROOT.TFile(outpath+ROOToutname+'_WS.root', 'RECREATE')
|
1593 |
discr_names = ['Zudscg', 'Zbb', 'TTbar','VV', 'ST', 'Sig115', 'Wudscg', 'Wbb', 'QCD']
|
1594 |
data_name = ['data_obs']
|
1595 |
|
1596 |
WS = ROOT.RooWorkspace('Zee','Zee')
|
1597 |
print 'WS initialized'
|
1598 |
|
1599 |
disc= ROOT.RooRealVar('BDT','BDT',-1,1)
|
1600 |
obs = ROOT.RooArgList(disc)
|
1601 |
|
1602 |
|
1603 |
histos = []
|
1604 |
typs = []
|
1605 |
datas = []
|
1606 |
datatyps =[]
|
1607 |
|
1608 |
for job in info:
|
1609 |
#print job.name
|
1610 |
if job.type != 'DATA':
|
1611 |
#print 'MC'
|
1612 |
hTemp, typ = getHistoFromTree2(job,options)
|
1613 |
histos.append(hTemp)
|
1614 |
typs.append(typ)
|
1615 |
elif job.name in data:
|
1616 |
#print 'DATA'
|
1617 |
hTemp, typ = getHistoFromTree2(job,options)
|
1618 |
datas.append(hTemp)
|
1619 |
datatyps.append(typ)
|
1620 |
|
1621 |
|
1622 |
|
1623 |
|
1624 |
ROOT.gROOT.SetStyle("Plain")
|
1625 |
c = ROOT.TCanvas(name,title, 800, 600)
|
1626 |
MC_integral=0
|
1627 |
MC_entries=0
|
1628 |
|
1629 |
for histo in histos:
|
1630 |
MC_integral+=histo.Integral()
|
1631 |
#MC_entries+=histo.GetEntries()
|
1632 |
print "\033[1;32m\n\tMC integral = %s\033[1;m"%MC_integral
|
1633 |
#flow = MC_entries-MC_integral
|
1634 |
#if flow > 0:
|
1635 |
# print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
1636 |
|
1637 |
#ORDER AND ADD TOGETHER
|
1638 |
|
1639 |
ordnung=[]
|
1640 |
ordnungtyp=[]
|
1641 |
num=[0]*len(setup)
|
1642 |
for i in range(0,len(setup)):
|
1643 |
for j in range(0,len(histos)):
|
1644 |
if typs[j] == setup[i]:
|
1645 |
num[i]+=1
|
1646 |
ordnung.append(histos[j])
|
1647 |
ordnungtyp.append(typs[j])
|
1648 |
|
1649 |
del histos
|
1650 |
del typs
|
1651 |
|
1652 |
histos=ordnung
|
1653 |
typs=ordnungtyp
|
1654 |
|
1655 |
for k in range(0,len(num)):
|
1656 |
for m in range(0,num[k]):
|
1657 |
if m > 0:
|
1658 |
histos[k].Add(histos[k+1],1)
|
1659 |
del histos[k+1]
|
1660 |
del typs[k+1]
|
1661 |
|
1662 |
|
1663 |
|
1664 |
d1 = ROOT.TH1F('d1','d1',nBins,xMin,xMax)
|
1665 |
|
1666 |
for i in range(0,len(datas)):
|
1667 |
d1.Add(datas[i],1)
|
1668 |
print "\033[1;32m\n\tDATA integral = %s\033[1;m"%d1.Integral()
|
1669 |
flow = d1.GetEntries()-d1.Integral()
|
1670 |
if flow > 0:
|
1671 |
print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
1672 |
|
1673 |
|
1674 |
|
1675 |
|
1676 |
|
1677 |
|
1678 |
for i in range(0,len(histos)):
|
1679 |
histos[i].SetName(discr_names[i])
|
1680 |
histos[i].SetDirectory(outfile)
|
1681 |
histos[i].Draw()
|
1682 |
|
1683 |
|
1684 |
|
1685 |
|
1686 |
|
1687 |
statUp = histos[i].Clone()
|
1688 |
statDown = histos[i].Clone()
|
1689 |
#shift up and down with statistical error
|
1690 |
for j in range(histos[i].GetNbinsX()):
|
1691 |
statUp.SetBinContent(j,statUp.GetBinContent(j)+statUp.GetBinError(j))
|
1692 |
statDown.SetBinContent(j,statDown.GetBinContent(j)-statDown.GetBinError(j))
|
1693 |
statUp.SetName('%sStatsUp'%discr_names[i])
|
1694 |
statDown.SetName('%sStatsDown'%discr_names[i])
|
1695 |
|
1696 |
|
1697 |
histPdf = ROOT.RooDataHist(discr_names[i],discr_names[i],obs,histos[i])
|
1698 |
|
1699 |
#UP stats of MCs
|
1700 |
RooStatsUp = ROOT.RooDataHist('%sStatsUp'%discr_names[i],'%sStatsUp'%discr_names[i],obs, statUp)
|
1701 |
#DOWN stats of MCs
|
1702 |
RooStatsDown = ROOT.RooDataHist('%sStatsDown'%discr_names[i],'%sStatsDown'%discr_names[i],obs, statDown)
|
1703 |
|
1704 |
|
1705 |
getattr(WS,'import')(histPdf)
|
1706 |
getattr(WS,'import')(RooStatsUp)
|
1707 |
getattr(WS,'import')(RooStatsDown)
|
1708 |
|
1709 |
|
1710 |
|
1711 |
frame=disc.frame()
|
1712 |
|
1713 |
|
1714 |
ROOT.RooAbsData.plotOn(histPdf,frame)
|
1715 |
frame.Draw()
|
1716 |
|
1717 |
c.Print('~/Hbb/WStest/%s.png'%discr_names[i])
|
1718 |
|
1719 |
|
1720 |
|
1721 |
|
1722 |
#print discr_names[i]
|
1723 |
#print histos[i].Integral(0,nBins)
|
1724 |
|
1725 |
|
1726 |
#datas[0]: data_obs
|
1727 |
d1.SetName(data_name[0])
|
1728 |
d1.SetDirectory(outfile)
|
1729 |
#print data_name[0]
|
1730 |
#print d1.Integral(0,nBins)
|
1731 |
#print d1.Integral()
|
1732 |
#print d1.GetEntries()
|
1733 |
|
1734 |
#write DATAcard
|
1735 |
f = open(outpath+'/vhbb_%s_WS.txt'%ROOToutname,'w')
|
1736 |
f.write('imax\t1\tnumber of channels\n')
|
1737 |
f.write('jmax\t8\tnumber of backgrounds (\'*\' = automatic)\n')
|
1738 |
f.write('kmax\t*\tnumber of nuisance parameters (sources of systematical uncertainties)\n\n')
|
1739 |
|
1740 |
f.write('shapes * * %s_WS.root $CHANNEL:$PROCESS $CHANNEL:$PROCESS$SYSTEMATIC\n\n'%ROOToutname)
|
1741 |
f.write('bin\tZee\n\n')
|
1742 |
f.write('observation\t%s\n\n'%d1.Integral())
|
1743 |
f.write('bin\tZee\tZee\tZee\tZee\tZee\tZee\tZee\tZee\tZee\n')
|
1744 |
f.write('process\tSig115\tWudscg\tWbb\tZudscg\tZbb\tTTbar\tST\tVV\tQCD\n')
|
1745 |
f.write('process\t0\t1\t2\t3\t4\t5\t6\t7\t8\n')
|
1746 |
f.write('rate\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n'%(histos[5].Integral(),0,0,histos[0].Integral(),histos[1].Integral(),histos[2].Integral(),histos[4].Integral(),histos[3].Integral(),0)) #\t1.918\t0.000 0.000\t135.831 117.86 18.718 1.508\t7.015\t0.000
|
1747 |
f.write('lumi\tlnN\t1.045\t-\t-\t-\t-\t-\t1.045\t1.045\t1.045\n\n')
|
1748 |
f.write('pdf_qqbar\tlnN\t1.01\t-\t-\t-\t-\t-\t-\t1.01\t-\n')
|
1749 |
f.write('pdf_gg\tlnN\t-\t-\t-\t-\t-\t-\t1.01\t-\t1.01\n')
|
1750 |
f.write('QCDscale_VH\tlnN\t1.04\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1751 |
f.write('QCDscale_ttbar\tlnN\t-\t-\t-\t-\t-\t-\t1.06\t-\t-\n')
|
1752 |
f.write('QCDscale_VV\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.04\t-\n')
|
1753 |
f.write('QCDscale_QCD\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t1.30\n')
|
1754 |
f.write('CMS_vhbb_boost_EWK\tlnN\t1.05\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1755 |
f.write('CMS_vhbb_boost_QCD\tlnN\t1.10\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1756 |
f.write('CMS_vhbb_ST\tlnN\t-\t-\t-\t-\t-\t-\t1.29\t-\t-\n')
|
1757 |
f.write('CMS_vhbb__VV\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.30\t-\n')
|
1758 |
f.write('CMS_vhbb_WjLF_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1759 |
f.write('CMS_vhbb_WjHF_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1760 |
f.write('CMS_vhbb_ZjLF_SF\tlnN\t-\t-\t-\t1.06\t-\t-\t-\t-\t-\n')
|
1761 |
f.write('CMS_vhbb_ZjHF_SF\tlnN\t-\t-\t-\t-\t1.17\t-\t-\t-\t-\n')
|
1762 |
f.write('CMS_vhbb_TT_SF\tlnN\t-\t-\t-\t-\t-\t1.14\t-\t-\t-\n')
|
1763 |
f.write('CMS_vhbb_QCD_SF\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1764 |
f.write('CMS_trigger_m\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1765 |
f.write('CMS_trigger_e\tlnN\t1.02\t-\t-\t-\t-\t-\t1.02\t1.02\t-\n')
|
1766 |
f.write('CMS_vhbb_trigger_MET\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1767 |
f.write('CMS_eff_m\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1768 |
f.write('CMS_eff_e\tlnN\t1.04\t-\t-\t-\t-\t-\t1.04\t1.04\t1.04\n')
|
1769 |
f.write('CMS_toteff_b\tlnN\t1.10\t1.10\t1.00\t1.10\t1.00\t1.10\t1.10\t1.10\t1.10\n')
|
1770 |
f.write('CMS_totscale_j\tlnN\t1.02\t-\t-\t-\t-\t-\t1.02\t1.02\t-\n')
|
1771 |
f.write('CMS_totres_j\tlnN\t1.05\t1.03\t1.03\t1.03\t1.03\t1.03\t1.03\t1.05\t-\n')
|
1772 |
f.write('CMS_vhbb_MET_nojets\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1773 |
f.write('CMS_vhbb_stats_VH_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1774 |
f.write('CMS_vhbb_stats_WjLF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1775 |
f.write('CMS_vhbb_stats_WjHF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1776 |
f.write('CMS_vhb_stats_ZjLF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1777 |
f.write('CMS_vhbb_stats_ZjHF_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1778 |
f.write('CMS_vhbb_stats_TT_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1779 |
f.write('CMS_vhbb_stats_sT_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1780 |
f.write('CMS_vhbb_stats_VV_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1781 |
f.write('CMS_vhbb_stats_QCD_Wmn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1782 |
f.write('CMS_vhbb_stats_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1783 |
f.write('CMS_vhbb_stats_WjLF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1784 |
f.write('CMS_vhbb_stats_WjHF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1785 |
f.write('CMS_vhb_stats_ZjLF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1786 |
f.write('CMS_vhbb_stats_ZjHF_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1787 |
f.write('CMS_vhbb_stats_TT_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1788 |
f.write('CMS_vhbb_stats_sT_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1789 |
f.write('CMS_vhbb_stats_VV_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1790 |
f.write('CMS_vhbb_stats_QCD_Wen\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1791 |
f.write('CMS_vhbb_stats_VH_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1792 |
f.write('CMS_vhbb_stats_WjLF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1793 |
f.write('CMS_vhbb_stats_WjHF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1794 |
f.write('CMS_vhb_stats_ZjLF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1795 |
f.write('CMS_vhbb_stats_ZjHF_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1796 |
f.write('CMS_vhbb_stats_TT_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1797 |
f.write('CMS_vhbb_stats_sT_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1798 |
f.write('CMS_vhbb_stats_VV_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1799 |
f.write('CMS_vhbb_stats_QCD_Zmm\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1800 |
f.write('CMS_vhbb_stats_VH_Zee\tlnN\t1.03\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1801 |
f.write('CMS_vhbb_stats_WjLF_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1802 |
f.write('CMS_vhbb_stats_WjHF_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1803 |
f.write('CMS_vhb_stats_ZjLF_Zee\tlnN\t-\t-\t-\t1.05\t-\t-\t-\t-\t-\n')
|
1804 |
f.write('CMS_vhbb_stats_ZjHF_Zee\tlnN\t-\t-\t-\t-\t1.07\t-\t-\t-\t-\n')
|
1805 |
f.write('CMS_vhbb_stats_TT_Zee\tlnN\t-\t-\t-\t-\t-\t1.06\t-\t-\t-\n')
|
1806 |
f.write('CMS_vhbb_stats_sT_Zee\tlnN\t-\t-\t-\t-\t-\t-\t1.30\t-\t-\n')
|
1807 |
f.write('CMS_vhbb_stats_Diboson_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t1.06\t-\n')
|
1808 |
f.write('CMS_vhbb_stats_QCD_Zee\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1809 |
f.write('CMS_vhbb_stats_VH_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1810 |
f.write('CMS_vhbb_stats_WjLF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1811 |
f.write('CMS_vhbb_stats_WjHF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1812 |
f.write('CMS_vhb_stats_ZjLF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1813 |
f.write('CMS_vhbb_stats_ZjHF_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1814 |
f.write('CMS_vhbb_stats_TT_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1815 |
f.write('CMS_vhbb_stats_sT_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1816 |
f.write('CMS_vhbb_stats_VV_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1817 |
f.write('CMS_vhbb_stats_QCD_Znn\tlnN\t-\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1818 |
|
1819 |
f.write('Stats\tshape\t1.0\t-\t-\t-\t-\t-\t-\t-\t-\n')
|
1820 |
f.write('Stats\tshape\t-\t1.0\t-\t-\t-\t-\t-\t-\t-\n')
|
1821 |
f.write('Stats\tshape\t-\t-\t1.0\t-\t-\t-\t-\t-\t-\n')
|
1822 |
f.write('Stats\tshape\t-\t-\t-\t1.0\t-\t-\t-\t-\t-\n')
|
1823 |
f.write('Stats\tshape\t-\t-\t-\t-\t1.0\t-\t-\t-\t-\n')
|
1824 |
f.write('Stats\tshape\t-\t-\t-\t-\t-\t1.0\t-\t-\t-\n')
|
1825 |
f.write('Stats\tshape\t-\t-\t-\t-\t-\t-\t1.0\t-\t-\n')
|
1826 |
f.write('Stats\tshape\t-\t-\t-\t-\t-\t-\t-\t1.0\t-\n')
|
1827 |
f.write('Stats\tshape\t-\t-\t-\t-\t-\t-\t-\t-\t1.0\n')
|
1828 |
|
1829 |
|
1830 |
f.close()
|
1831 |
|
1832 |
#dunnmies
|
1833 |
#Wlight,Wbb,QCD
|
1834 |
for i in range(6,9):
|
1835 |
dummy = ROOT.TH1F(discr_names[i], "discriminator", nBins, xMin, xMax)
|
1836 |
dummy.SetDirectory(outfile)
|
1837 |
dummy.Draw()
|
1838 |
|
1839 |
#nominal
|
1840 |
histPdf = ROOT.RooDataHist(discr_names[i],discr_names[i],obs,dummy)
|
1841 |
#UP stats of MCs
|
1842 |
RooStatsUp = ROOT.RooDataHist('%sStatsUp'%discr_names[i],'%sStatsUp'%discr_names[i],obs, dummy)
|
1843 |
#DOWN stats of MCs
|
1844 |
RooStatsDown = ROOT.RooDataHist('%sStatsDown'%discr_names[i],'%sStatsDown'%discr_names[i],obs, dummy)
|
1845 |
|
1846 |
|
1847 |
getattr(WS,'import')(histPdf)
|
1848 |
getattr(WS,'import')(RooStatsUp)
|
1849 |
getattr(WS,'import')(RooStatsDown)
|
1850 |
#print discr_names[i]
|
1851 |
#Wbb
|
1852 |
#dummy = ROOT.TH1F(discr_names[7], "discriminator", div, discrMin, discrMax)
|
1853 |
#dummies.append(dummy)
|
1854 |
#QCD
|
1855 |
#dummy = ROOT.TH1F(discr_names[8], "discriminator", div, discrMin, discrMax)
|
1856 |
#dummies.append(dummy)
|
1857 |
|
1858 |
#Write to file
|
1859 |
|
1860 |
|
1861 |
|
1862 |
|
1863 |
#HISTOGRAMM of DATA
|
1864 |
#ROOT.RooDataHist('data_obsHist','',RooArgList,??)
|
1865 |
histPdf = ROOT.RooDataHist('data_obs','data_obs',obs,d1)
|
1866 |
ROOT.RooAbsData.plotOn(histPdf,frame)
|
1867 |
frame.Draw()
|
1868 |
|
1869 |
c.Print('~/Hbb/WStest/d1.png')
|
1870 |
#IMPORT
|
1871 |
getattr(WS,'import')(histPdf)
|
1872 |
|
1873 |
#Number of Obs?
|
1874 |
nObs = int(d1.Integral())
|
1875 |
|
1876 |
|
1877 |
|
1878 |
|
1879 |
'''
|
1880 |
|
1881 |
theStatsUp = []
|
1882 |
theStatsDown = []
|
1883 |
|
1884 |
#LOOP over MCsamples BKG
|
1885 |
for i in range(0,len(self.__theStacks)):
|
1886 |
#name = 'ZjLF'
|
1887 |
name = '%s%s' %(self.__dcRepMap[self.__datasets[i]],self.__writeCombination) #what is self writeCombination??, assume ''
|
1888 |
print name
|
1889 |
self.__theStacks[i].SetName(name)
|
1890 |
|
1891 |
#HISTOGRAMM of MCs
|
1892 |
#ROOT.RooDataHist('ZjLF','',RooArgList,??)
|
1893 |
histPdf = ROOT.RooDataHist(name,'',obs,self.__theStacks[i])
|
1894 |
#IMPORT
|
1895 |
getattr(self.__w,'import')(histPdf)
|
1896 |
|
1897 |
|
1898 |
if self.__writeCombination == '':
|
1899 |
self.__dcRepMap['n%s'%(self.__datasets[i])] = self.__theStacks[i].Integral()
|
1900 |
name = '%s%s%s%s' %(self.__dcRepMap[self.__datasets[i]],'_CMS_vhbb_stats_',self.__dcRepMap[self.__datasets[i]],'_%(bin)s'%self.__dcRepMap)
|
1901 |
statUp = self.__theStacks[i].Clone()
|
1902 |
statDown = self.__theStacks[i].Clone()
|
1903 |
#shift up and down with statistical error
|
1904 |
for j in range(self.__theStacks[i].GetNbinsX()):
|
1905 |
statUp.SetBinContent(j,statUp.GetBinContent(j)+statUp.GetBinError(j))
|
1906 |
statDown.SetBinContent(j,statDown.GetBinContent(j)-statDown.GetBinError(j))
|
1907 |
theStatsUp.append(statUp)
|
1908 |
theStatsDown.append(statDown)
|
1909 |
theStatsUp[i].SetName('%s%s' %(name,'Up'))
|
1910 |
theStatsDown[i].SetName('%s%s' %(name,'Down'))
|
1911 |
#UP stats of MCs
|
1912 |
theRooStatsUp = ROOT.RooDataHist('%s%s' %(name,'Up'),'',obs, theStatsUp[i])
|
1913 |
#DOWN stats of MCs
|
1914 |
theRooStatsDown = ROOT.RooDataHist('%s%s' %(name,'Down'),'',obs, theStatsDown[i])
|
1915 |
getattr(self.__w,'import')(theRooStatsUp)
|
1916 |
getattr(self.__w,'import')(theRooStatsDown)
|
1917 |
|
1918 |
|
1919 |
#overlays=signal SIG
|
1920 |
#OVERLAYS??
|
1921 |
theOStatsUp = []
|
1922 |
theOStatsDown = []
|
1923 |
for i in range(0,len(self.__theOverlays)):
|
1924 |
name = '%s%s' %(self.__dcRepMap[self.__overlays[i]],self.__writeCombination)
|
1925 |
self.__theOverlays[i].SetName(name)
|
1926 |
histPdf = ROOT.RooDataHist(name,'',obs,self.__theOverlays[i])
|
1927 |
getattr(self.__w,'import')(histPdf)
|
1928 |
if self.__writeCombination == '':
|
1929 |
self.__dcRepMap['nSig'] = self.__theOverlays[i].Integral()
|
1930 |
#e.g. name=TTbar_CMS_vhbb_stats_TTbar_ZeeUp
|
1931 |
name = '%s%s%s%s' %(self.__dcRepMap[self.__overlays[i]],'_CMS_vhbb_stats_',self.__dcRepMap[self.__overlays[i]],'_%(bin)s'%self.__dcRepMap)
|
1932 |
statUp = self.__theOverlays[i].Clone()
|
1933 |
statDown = self.__theOverlays[i].Clone()
|
1934 |
for j in range(self.__theOverlays[i].GetNbinsX()):
|
1935 |
statUp.SetBinContent(j,statUp.GetBinContent(j)+statUp.GetBinError(j))
|
1936 |
statDown.SetBinContent(j,statDown.GetBinContent(j)-statDown.GetBinError(j))
|
1937 |
theOStatsUp.append(statUp)
|
1938 |
theOStatsDown.append(statDown)
|
1939 |
theOStatsUp[i].SetName('%s%s' %(name,'Up'))
|
1940 |
theOStatsDown[i].SetName('%s%s' %(name,'Down'))
|
1941 |
theRooStatsUp = ROOT.RooDataHist('%s%s' %(name,'Up'),'',obs, theOStatsUp[i])
|
1942 |
theRooStatsDown = ROOT.RooDataHist('%s%s' %(name,'Down'),'',obs, theOStatsDown[i])
|
1943 |
getattr(self.__w,'import')(theRooStatsUp)
|
1944 |
getattr(self.__w,'import')(theRooStatsDown)
|
1945 |
|
1946 |
'''
|
1947 |
|
1948 |
WS.writeToFile(outpath+ROOToutname+'_WS.root')
|
1949 |
#WS.writeToFile("testWS.root")
|
1950 |
|
1951 |
|
1952 |
|
1953 |
|
1954 |
|
1955 |
|
1956 |
|
1957 |
|
1958 |
def SysPlot(mode,systematic):
|
1959 |
|
1960 |
ROOT.gROOT.SetStyle("Plain")
|
1961 |
c = ROOT.TCanvas('title','title', 800, 600)
|
1962 |
ROOT.gPad.SetTicks(1,1)
|
1963 |
|
1964 |
|
1965 |
#systematic='JER'
|
1966 |
|
1967 |
#if mode == 'test':
|
1968 |
# type = 'TMVAClassification_nov10BDTCatnaJet3_shuffled'
|
1969 |
|
1970 |
#if mode == 'test2':
|
1971 |
# type = 'TMVAClassification_nov10BDT_shuffled'
|
1972 |
|
1973 |
print 'ok, i plot the MVA output for you...'
|
1974 |
#namehisto = 'taskTMVAClassification_BDTCatnaJet3loose'
|
1975 |
namehisto = task+type
|
1976 |
rebin = 100
|
1977 |
if mode == 'test': path=treePath+'/test'
|
1978 |
if mode == 'Top': path=treePath+'/Top'
|
1979 |
if mode == 'Zlight': path=treePath+'/Zlight'
|
1980 |
if mode == 'Zbb': path=treePath+'/Zbb'
|
1981 |
if mode == 'Signal': path=treePath+'/Signal'
|
1982 |
|
1983 |
MVAtitle=mode
|
1984 |
nBins=div/rebin
|
1985 |
|
1986 |
Ntotal = ROOT.TH1F(systematic,systematic,nBins,discrMin,discrMax)
|
1987 |
Utotal = ROOT.TH1F('Utotal','Utotal',nBins,discrMin,discrMax)
|
1988 |
Dtotal = ROOT.TH1F('Dtotal','Dtotal',nBins,discrMin,discrMax)
|
1989 |
|
1990 |
for job in jobs: #jobs:
|
1991 |
jobN= path +'/MVA_'+training+'_'+MVAtitle+'.' + job +'.root'
|
1992 |
jobU= path +'/MVA_'+training+'_'+MVAtitle+'.' + job +'.'+systematic+'_up.root'
|
1993 |
jobD= path +'/MVA_'+training+'_'+MVAtitle+'.' + job +'.'+systematic+'_down.root'
|
1994 |
print jobN
|
1995 |
l = ROOT.TLegend(0.28, 0.73, 0.38, 0.88)
|
1996 |
#hTemp = getHistoFromTree(path,job2,0)
|
1997 |
|
1998 |
N = ROOT.TFile(jobN, 'OPEN')
|
1999 |
NHist = N.Get(namehisto)
|
2000 |
NHist.Rebin(rebin)
|
2001 |
NHist.SetDirectory(0)
|
2002 |
NHist.SetLineColor(1)
|
2003 |
NHist.SetMarkerStyle(8)
|
2004 |
NHist.SetStats(0)
|
2005 |
NHist.SetTitle('MVA '+systematic+' '+ legenden[jobs.index(job)])
|
2006 |
Ntotal.Add(NHist)
|
2007 |
l.AddEntry(NHist,'nominal','PL')
|
2008 |
|
2009 |
U = ROOT.TFile(jobU, 'OPEN')
|
2010 |
UHist = U.Get(namehisto)
|
2011 |
UHist.Rebin(rebin)
|
2012 |
UHist.SetDirectory(0)
|
2013 |
UHist.SetLineColor(4)
|
2014 |
UHist.SetLineStyle(4)
|
2015 |
UHist.SetLineWidth(2)
|
2016 |
l.AddEntry(UHist,'up','PL')
|
2017 |
Utotal.Add(UHist)
|
2018 |
|
2019 |
D = ROOT.TFile(jobD, 'OPEN')
|
2020 |
DHist = D.Get(namehisto)
|
2021 |
DHist.Rebin(rebin)
|
2022 |
DHist.SetDirectory(0)
|
2023 |
DHist.SetLineColor(2)
|
2024 |
DHist.SetLineStyle(3)
|
2025 |
DHist.SetLineWidth(2)
|
2026 |
l.AddEntry(DHist,'down','PL')
|
2027 |
Dtotal.Add(DHist)
|
2028 |
|
2029 |
NHist.Draw("P0")
|
2030 |
NHist.Draw("same")
|
2031 |
UHist.Draw("same")
|
2032 |
DHist.Draw("same")
|
2033 |
l.SetFillColor(0)
|
2034 |
l.SetBorderSize(0)
|
2035 |
l.Draw()
|
2036 |
title= mode + type + legenden[jobs.index(job)] +systematic
|
2037 |
name = '%s/Stack/%s.png' %(plotPath,title)
|
2038 |
c.Print(name)
|
2039 |
N.Close()
|
2040 |
U.Close()
|
2041 |
D.Close()
|
2042 |
|
2043 |
Ntotal.SetMarkerStyle(8)
|
2044 |
Ntotal.SetLineColor(1)
|
2045 |
Ntotal.SetStats(0)
|
2046 |
Ntotal.Draw("P0")
|
2047 |
Ntotal.Draw("same")
|
2048 |
Utotal.SetLineColor(4)
|
2049 |
Utotal.SetLineStyle(4)
|
2050 |
Utotal.SetLineWidth(2)
|
2051 |
Utotal.Draw("same")
|
2052 |
Dtotal.SetLineColor(2)
|
2053 |
Dtotal.SetLineStyle(3)
|
2054 |
Dtotal.Draw("same")
|
2055 |
Dtotal.SetLineWidth(2)
|
2056 |
l.Draw()
|
2057 |
|
2058 |
title= mode + type +systematic
|
2059 |
name = '%s/Stack/%s.png' %(plotPath,title)
|
2060 |
c.Print(name)
|
2061 |
|
2062 |
def newFoM(path,var):
|
2063 |
|
2064 |
|
2065 |
|
2066 |
|
2067 |
|
2068 |
plot=config.get('FoM',var)
|
2069 |
|
2070 |
infofile = open(path+'/samples.info','r')
|
2071 |
info = pickle.load(infofile)
|
2072 |
infofile.close()
|
2073 |
|
2074 |
|
2075 |
|
2076 |
options = plot.split(',')
|
2077 |
name=options[1]
|
2078 |
title = options[2]
|
2079 |
nBins=int(options[3])
|
2080 |
xMin=float(options[4])
|
2081 |
xMax=float(options[5])
|
2082 |
|
2083 |
bkgs=config.get('FoM','BKG')
|
2084 |
bkgs=bkgs.split(' ')
|
2085 |
|
2086 |
sigs=config.get('FoM','SIG')
|
2087 |
sigs=sigs.split(' ')
|
2088 |
|
2089 |
|
2090 |
ROOT.gROOT.SetStyle("Plain")
|
2091 |
c = ROOT.TCanvas(title,title, 800, 600)
|
2092 |
ROOT.gPad.SetTicks(1,1)
|
2093 |
|
2094 |
|
2095 |
|
2096 |
|
2097 |
print '\nProducing Plot of %s\n'%title
|
2098 |
|
2099 |
|
2100 |
histos = []
|
2101 |
|
2102 |
for job in info:
|
2103 |
if job.name in bkgs:
|
2104 |
hTemp, typ = getHistoFromTree2(job,options)
|
2105 |
histos.append(hTemp)
|
2106 |
|
2107 |
for job in info:
|
2108 |
if job.name in sigs:
|
2109 |
hTemp, typ = getHistoFromTree2(job,options)
|
2110 |
histos.append(hTemp)
|
2111 |
|
2112 |
for i in range(1,len(bkgs)):
|
2113 |
histos[0].Add(histos[1],1)
|
2114 |
del histos[1]
|
2115 |
|
2116 |
|
2117 |
for i in range(1,len(sigs)):
|
2118 |
histos[1].Add(histos[2],1)
|
2119 |
del histos[2]
|
2120 |
|
2121 |
|
2122 |
|
2123 |
fig = []
|
2124 |
C=[]
|
2125 |
print '\n\t--> Info:'
|
2126 |
B=histos[0].Integral()
|
2127 |
print '\t Background count is %s' %B
|
2128 |
S=histos[1].Integral()
|
2129 |
print '\t Signal count is %s\n' %S
|
2130 |
F=[]
|
2131 |
print 'nbins %s' %nBins
|
2132 |
print 'size %s' %histos[0].GetSize()
|
2133 |
for i in range(0,nBins):
|
2134 |
#print S
|
2135 |
#print B
|
2136 |
if B >= 0:
|
2137 |
FOM = S/(1.5+sqrt(B)+0.2*B)
|
2138 |
F.append(FOM)
|
2139 |
#print (S/(1.5+sqrt(B)+0.2*B))
|
2140 |
print 'S = %s, B = %s, FoM = %s' %(S,B,FOM)
|
2141 |
C.append(histos[0].GetBinCenter(i+1))
|
2142 |
else: print 'S %s, B %s' %(S,B)
|
2143 |
B=B-histos[0].GetBinContent(i+1)
|
2144 |
S=S-histos[1].GetBinContent(i+1)
|
2145 |
|
2146 |
x = array('f', C)
|
2147 |
y = array('f', F)
|
2148 |
gr1 = ROOT.TGraph(len(x), x,y)
|
2149 |
gr1.SetTitle(title)
|
2150 |
gr1.Draw('APL')
|
2151 |
gr1.GetXaxis().SetTitle('BDT Cut')
|
2152 |
gr1.GetYaxis().SetTitle('FoM')
|
2153 |
gr1.GetXaxis().SetRangeUser(xMin,xMax)
|
2154 |
name = '%s/%s' %(config.get('Directories','plotpath'),options[6])
|
2155 |
c.Print(name)
|
2156 |
|
2157 |
#*********************Actually DO STH*******************************
|
2158 |
#getList(signalFiles)
|
2159 |
if sys.argv[1] == 'limitWS': writeWorkspace(sys.argv[2],sys.argv[3],sys.argv[4])
|
2160 |
if sys.argv[1] == 'newtrain': newTraining(sys.argv[2],sys.argv[3])
|
2161 |
if sys.argv[1] == 'eval': evaluate(sys.argv[2],sys.argv[3])#,sys.argv[4])
|
2162 |
if sys.argv[1] == 'evalMulti': evalMulti(sys.argv[2],sys.argv[3])
|
2163 |
if sys.argv[1] == 'limit': Limit(sys.argv[2],sys.argv[3],sys.argv[4])
|
2164 |
if sys.argv[1] == 'plot': plot()
|
2165 |
if sys.argv[1] == 'allplots': allplots()
|
2166 |
if sys.argv[1] == 'comp': createComparison()
|
2167 |
if sys.argv[1] == 'compare': treeCompare(sys.argv[2],sys.argv[3])
|
2168 |
|
2169 |
if sys.argv[1] == 'MVAplot': MVAstack(sys.argv[2])
|
2170 |
if sys.argv[1] == 'SysPlot': SysPlot(sys.argv[2],sys.argv[3])
|
2171 |
if sys.argv[1] == 'copy': CutCopy(sys.argv[2])
|
2172 |
if sys.argv[1] == 'FoM': newFoM(sys.argv[2],sys.argv[3])
|
2173 |
if sys.argv[1] == 'shuffle': shuffle()
|
2174 |
if sys.argv[1] == 'SuperShuffle': SuperShuffle()
|
2175 |
if sys.argv[1] == 'addsys': AddSystematics(sys.argv[2])
|
2176 |
if sys.argv[1] == 'addcut': Addcut(sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
|
2177 |
if sys.argv[1] == 'addsinglecut': Addsinglecut(sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5])
|
2178 |
if sys.argv[1] == 'addfile': AddFile(sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5],sys.argv[6])
|
2179 |
if sys.argv[1] == 'stack': treeStack(sys.argv[2],sys.argv[3],sys.argv[4])
|