1 |
peller |
1.1 |
#!/usr/bin/env python
|
2 |
|
|
from samplesclass import sample
|
3 |
|
|
from printcolor import printc
|
4 |
|
|
import pickle
|
5 |
|
|
import ROOT
|
6 |
|
|
from ROOT import TFile, TTree
|
7 |
|
|
import ROOT
|
8 |
|
|
from array import array
|
9 |
nmohr |
1.3 |
from BetterConfigParser import BetterConfigParser
|
10 |
peller |
1.11 |
import sys, os
|
11 |
peller |
1.1 |
from mvainfos import mvainfo
|
12 |
peller |
1.10 |
#from gethistofromtree import getHistoFromTree, orderandadd
|
13 |
peller |
1.1 |
from Ratio import getRatio
|
14 |
peller |
1.8 |
from optparse import OptionParser
|
15 |
peller |
1.10 |
from HistoMaker import HistoMaker, orderandadd
|
16 |
nmohr |
1.15 |
import TdrStyles
|
17 |
peller |
1.1 |
|
18 |
peller |
1.7 |
#CONFIGURE
|
19 |
|
|
argv = sys.argv
|
20 |
|
|
parser = OptionParser()
|
21 |
|
|
parser.add_option("-P", "--path", dest="path", default="",
|
22 |
|
|
help="path to samples")
|
23 |
peller |
1.10 |
parser.add_option("-R", "--reg", dest="region", default="",
|
24 |
|
|
help="region to plot")
|
25 |
peller |
1.7 |
parser.add_option("-C", "--config", dest="config", default=[], action="append",
|
26 |
|
|
help="configuration file")
|
27 |
|
|
(opts, args) = parser.parse_args(argv)
|
28 |
|
|
if opts.config =="":
|
29 |
|
|
opts.config = "config"
|
30 |
|
|
print opts.config
|
31 |
|
|
config = BetterConfigParser()
|
32 |
|
|
config.read(opts.config)
|
33 |
|
|
anaTag = config.get("Analysis","tag")
|
34 |
|
|
|
35 |
peller |
1.17 |
TrainFlag = eval(config.get('Analysis','TrainFlag'))
|
36 |
|
|
|
37 |
|
|
if TrainFlag:
|
38 |
|
|
MC_rescale_factor=2.
|
39 |
|
|
print 'I RESCALE BY 2.0'
|
40 |
|
|
else: MC_rescale_factor = 1.
|
41 |
|
|
|
42 |
peller |
1.7 |
path = opts.path
|
43 |
peller |
1.10 |
region = opts.region
|
44 |
peller |
1.7 |
|
45 |
peller |
1.10 |
plotConfig = BetterConfigParser()
|
46 |
|
|
plotConfig.read('vhbbPlotDef.ini')
|
47 |
peller |
1.7 |
|
48 |
peller |
1.10 |
#get locations:
|
49 |
|
|
Wdir=config.get('Directories','Wdir')
|
50 |
peller |
1.1 |
|
51 |
peller |
1.10 |
section='Plot:%s'%region
|
52 |
peller |
1.1 |
|
53 |
peller |
1.10 |
Normalize = eval(config.get(section,'Normalize'))
|
54 |
|
|
log = eval(config.get(section,'log'))
|
55 |
|
|
blind = eval(config.get(section,'blind'))
|
56 |
|
|
|
57 |
|
|
infofile = open(path+'/samples.info','r')
|
58 |
|
|
info = pickle.load(infofile)
|
59 |
|
|
infofile.close()
|
60 |
peller |
1.1 |
|
61 |
peller |
1.10 |
#options = plot.split(',')
|
62 |
peller |
1.1 |
|
63 |
peller |
1.10 |
mass = config.get(section,'Signal')
|
64 |
peller |
1.1 |
|
65 |
peller |
1.10 |
vars = (config.get(section, 'vars')).split(',')
|
66 |
peller |
1.1 |
|
67 |
peller |
1.10 |
names = [plotConfig.get('plotDef:%s'%x,'relPath') for x in vars]
|
68 |
|
|
nBins = [eval(plotConfig.get('plotDef:%s'%x,'nBins')) for x in vars]
|
69 |
|
|
xMin = [eval(plotConfig.get('plotDef:%s'%x,'min')) for x in vars]
|
70 |
|
|
xMax = [eval(plotConfig.get('plotDef:%s'%x,'max')) for x in vars]
|
71 |
|
|
xAxis = [plotConfig.get('plotDef:%s'%x,'xAxis') for x in vars]
|
72 |
peller |
1.5 |
|
73 |
peller |
1.10 |
for p in range(0,len(names)):
|
74 |
|
|
if '<mass>' in names[p]:
|
75 |
|
|
newp= names[p].replace('<mass>',mass)
|
76 |
|
|
names[p]=newp
|
77 |
|
|
print names[p]
|
78 |
peller |
1.5 |
|
79 |
peller |
1.10 |
data = config.get(section,'Datas')
|
80 |
|
|
if config.has_option(section, 'Datacut'):
|
81 |
|
|
datacut=config.get(section, 'Datacut')
|
82 |
|
|
else:
|
83 |
|
|
datacut = region
|
84 |
peller |
1.1 |
|
85 |
peller |
1.10 |
options=[]
|
86 |
peller |
1.1 |
|
87 |
peller |
1.10 |
if blind: blindopt='blind'
|
88 |
|
|
else: blindopt = 'noblind'
|
89 |
peller |
1.1 |
|
90 |
peller |
1.10 |
for i in range(0,len(vars)):
|
91 |
|
|
options.append([names[i],'',xAxis[i],nBins[i],xMin[i],xMax[i],'%s_%s.pdf'%(region,vars[i]),region,datacut,mass,data,blindopt])
|
92 |
peller |
1.1 |
|
93 |
|
|
|
94 |
peller |
1.11 |
setup=config.get('Plot_general','setup')
|
95 |
peller |
1.1 |
setup=setup.split(',')
|
96 |
|
|
|
97 |
peller |
1.11 |
samples=config.get('Plot_general','samples')
|
98 |
peller |
1.8 |
samples=samples.split(',')
|
99 |
|
|
|
100 |
peller |
1.11 |
colorDict=eval(config.get('Plot_general','colorDict'))
|
101 |
peller |
1.8 |
#color=color.split(',')
|
102 |
peller |
1.1 |
|
103 |
|
|
|
104 |
|
|
weightF=config.get('Weights','weightF')
|
105 |
peller |
1.14 |
Group = eval(config.get('Plot_general','Group'))
|
106 |
peller |
1.1 |
|
107 |
|
|
|
108 |
peller |
1.10 |
#GETALL AT ONCE
|
109 |
peller |
1.1 |
|
110 |
peller |
1.17 |
Plotter=HistoMaker(path,config,region,options,MC_rescale_factor)
|
111 |
|
|
|
112 |
peller |
1.10 |
#print '\nProducing Plot of %s\n'%vars[v]
|
113 |
|
|
Lhistos = [[] for _ in range(0,len(vars))]
|
114 |
|
|
Ltyps = [[] for _ in range(0,len(vars))]
|
115 |
|
|
Ldatas = [[] for _ in range(0,len(vars))]
|
116 |
|
|
Ldatatyps = [[] for _ in range(0,len(vars))]
|
117 |
|
|
Ldatanames = [[] for _ in range(0,len(vars))]
|
118 |
peller |
1.1 |
|
119 |
nmohr |
1.16 |
def myText(txt="CMS Preliminary",ndcX=0,ndcY=0,size=0.8):
|
120 |
|
|
ROOT.gPad.Update()
|
121 |
|
|
text = ROOT.TLatex()
|
122 |
|
|
text.SetNDC()
|
123 |
|
|
text.SetTextColor(ROOT.kBlack)
|
124 |
|
|
text.SetTextSize(text.GetTextSize()*size)
|
125 |
|
|
text.DrawLatex(ndcX,ndcY,txt)
|
126 |
|
|
return text
|
127 |
|
|
|
128 |
peller |
1.12 |
|
129 |
|
|
#Find out Lumi:
|
130 |
|
|
for job in info:
|
131 |
nmohr |
1.13 |
if job.name in data: lumi_data=float(job.lumi)
|
132 |
peller |
1.12 |
|
133 |
|
|
Plotter.lumi=lumi_data
|
134 |
|
|
|
135 |
peller |
1.6 |
for job in info:
|
136 |
|
|
if eval(job.active):
|
137 |
|
|
if job.subsamples:
|
138 |
|
|
for subsample in range(0,len(job.subnames)):
|
139 |
|
|
|
140 |
peller |
1.8 |
if job.subnames[subsample] in samples:
|
141 |
peller |
1.10 |
hTempList, typList = Plotter.getHistoFromTree(job,subsample)
|
142 |
|
|
for v in range(0,len(vars)):
|
143 |
|
|
Lhistos[v].append(hTempList[v])
|
144 |
|
|
Ltyps[v].append(Group[job.subnames[subsample]])
|
145 |
peller |
1.6 |
|
146 |
|
|
else:
|
147 |
peller |
1.8 |
if job.name in samples:
|
148 |
peller |
1.6 |
#print job.getpath()
|
149 |
peller |
1.10 |
hTempList, typList = Plotter.getHistoFromTree(job)
|
150 |
|
|
for v in range(0,len(vars)):
|
151 |
|
|
Lhistos[v].append(hTempList[v])
|
152 |
|
|
Ltyps[v].append(Group[job.name])
|
153 |
peller |
1.6 |
|
154 |
|
|
elif job.name in data:
|
155 |
|
|
#print 'DATA'
|
156 |
peller |
1.10 |
hTemp, typ = Plotter.getHistoFromTree(job)
|
157 |
|
|
for v in range(0,len(vars)):
|
158 |
|
|
Ldatas[v].append(hTemp[v])
|
159 |
|
|
Ldatatyps[v].append(typ[v])
|
160 |
|
|
Ldatanames[v].append(job.name)
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
for v in range(0,len(vars)):
|
164 |
|
|
|
165 |
|
|
histos = Lhistos[v]
|
166 |
|
|
typs = Ltyps[v]
|
167 |
|
|
datas = Ldatas[v]
|
168 |
|
|
datatyps = Ldatatyps[v]
|
169 |
|
|
datanames= Ldatanames[v]
|
170 |
peller |
1.6 |
|
171 |
nmohr |
1.15 |
TdrStyles.tdrStyle()
|
172 |
peller |
1.1 |
|
173 |
nmohr |
1.15 |
c = ROOT.TCanvas(vars[v],'', 600, 600)
|
174 |
peller |
1.10 |
c.SetFillStyle(4000)
|
175 |
|
|
c.SetFrameFillStyle(1000)
|
176 |
|
|
c.SetFrameFillColor(0)
|
177 |
|
|
|
178 |
|
|
oben = ROOT.TPad('oben','oben',0,0.3 ,1.0,1.0)
|
179 |
|
|
oben.SetBottomMargin(0)
|
180 |
|
|
oben.SetFillStyle(4000)
|
181 |
|
|
oben.SetFrameFillStyle(1000)
|
182 |
|
|
oben.SetFrameFillColor(0)
|
183 |
|
|
unten = ROOT.TPad('unten','unten',0,0.0,1.0,0.3)
|
184 |
|
|
unten.SetTopMargin(0.)
|
185 |
|
|
unten.SetBottomMargin(0.35)
|
186 |
|
|
unten.SetFillStyle(4000)
|
187 |
|
|
unten.SetFrameFillStyle(1000)
|
188 |
|
|
unten.SetFrameFillColor(0)
|
189 |
|
|
|
190 |
|
|
oben.Draw()
|
191 |
|
|
unten.Draw()
|
192 |
|
|
|
193 |
|
|
oben.cd()
|
194 |
|
|
|
195 |
|
|
allStack = ROOT.THStack(vars[v],'')
|
196 |
|
|
l = ROOT.TLegend(0.75, 0.63, 0.88, 0.88)
|
197 |
|
|
MC_integral=0
|
198 |
|
|
MC_entries=0
|
199 |
|
|
|
200 |
|
|
for histo in histos:
|
201 |
|
|
MC_integral+=histo.Integral()
|
202 |
|
|
#MC_entries+=histo.GetEntries()
|
203 |
|
|
print "\033[1;32m\n\tMC integral = %s\033[1;m"%MC_integral
|
204 |
|
|
|
205 |
|
|
#ORDER AND ADD TOGETHER
|
206 |
peller |
1.11 |
#print typs
|
207 |
|
|
#print setup
|
208 |
peller |
1.10 |
histos, typs = orderandadd(histos,typs,setup)
|
209 |
|
|
|
210 |
|
|
|
211 |
|
|
k=len(histos)
|
212 |
nmohr |
1.15 |
|
213 |
peller |
1.10 |
for j in range(0,k):
|
214 |
|
|
#print histos[j].GetBinContent(1)
|
215 |
|
|
i=k-j-1
|
216 |
|
|
histos[i].SetFillColor(int(colorDict[setup[i]]))
|
217 |
|
|
histos[i].SetLineColor(1)
|
218 |
|
|
allStack.Add(histos[i])
|
219 |
|
|
l.AddEntry(histos[j],typs[j],'F')
|
220 |
|
|
|
221 |
|
|
d1 = ROOT.TH1F('noData','noData',nBins[v],xMin[v],xMax[v])
|
222 |
|
|
datatitle=''
|
223 |
|
|
for i in range(0,len(datas)):
|
224 |
|
|
d1.Add(datas[i],1)
|
225 |
|
|
if i ==0:
|
226 |
|
|
datatitle=datanames[i]
|
227 |
|
|
else:
|
228 |
|
|
datatitle=datatitle+ ' + '+datanames[i]
|
229 |
|
|
print "\033[1;32m\n\tDATA integral = %s\033[1;m"%d1.Integral()
|
230 |
|
|
flow = d1.GetEntries()-d1.Integral()
|
231 |
|
|
if flow > 0:
|
232 |
|
|
print "\033[1;31m\tU/O flow: %s\033[1;m"%flow
|
233 |
|
|
l.AddEntry(d1,datatitle,'PL')
|
234 |
|
|
|
235 |
|
|
if Normalize:
|
236 |
nmohr |
1.15 |
if MC_integral != 0: stackscale=d1.Integral()/MC_integral
|
237 |
peller |
1.10 |
stackhists=allStack.GetHists()
|
238 |
|
|
for blabla in stackhists:
|
239 |
nmohr |
1.15 |
if MC_integral != 0: blabla.Scale(stackscale)
|
240 |
|
|
|
241 |
|
|
allMC=ROOT.TH1F('allMC','allMC',nBins[v],xMin[v],xMax[v])
|
242 |
|
|
allMC.Sumw2()
|
243 |
|
|
for bin in range(0,nBins[v]):
|
244 |
|
|
allMC.SetBinContent(bin,allStack.GetStack().Last().GetBinContent(bin))
|
245 |
|
|
allMC.SetBinError(bin,allStack.GetStack().Last().GetBinError(bin))
|
246 |
peller |
1.10 |
|
247 |
|
|
allStack.SetTitle()
|
248 |
|
|
allStack.Draw("hist")
|
249 |
|
|
allStack.GetXaxis().SetTitle('')
|
250 |
nmohr |
1.15 |
yTitle = 'Entries'
|
251 |
|
|
if not '/' in yTitle:
|
252 |
|
|
yAppend = '%s' %(allStack.GetXaxis().GetBinWidth(1))
|
253 |
|
|
yTitle = '%s / %s' %(yTitle, yAppend)
|
254 |
|
|
allStack.GetYaxis().SetTitle(yTitle)
|
255 |
peller |
1.10 |
allStack.GetXaxis().SetRangeUser(xMin[v],xMax[v])
|
256 |
|
|
allStack.GetYaxis().SetRangeUser(0,20000)
|
257 |
nmohr |
1.15 |
theErrorGraph = ROOT.TGraphErrors(allMC)
|
258 |
|
|
theErrorGraph.SetFillColor(ROOT.kGray+3)
|
259 |
|
|
theErrorGraph.SetFillStyle(3013)
|
260 |
|
|
theErrorGraph.Draw('SAME2')
|
261 |
peller |
1.10 |
Ymax = max(allStack.GetMaximum(),d1.GetMaximum())*1.3
|
262 |
|
|
allStack.SetMaximum(Ymax)
|
263 |
|
|
allStack.SetMinimum(0.1)
|
264 |
|
|
c.Update()
|
265 |
|
|
if log:
|
266 |
|
|
ROOT.gPad.SetLogy()
|
267 |
|
|
ROOT.gPad.SetTicks(1,1)
|
268 |
nmohr |
1.15 |
#allStack.Draw("hist")
|
269 |
|
|
d1.Draw("E0same")
|
270 |
peller |
1.10 |
l.SetFillColor(0)
|
271 |
|
|
l.SetBorderSize(0)
|
272 |
|
|
l.Draw()
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
|
276 |
nmohr |
1.16 |
tPrel = myText("CMS Preliminary",0.17,0.88,1.04)
|
277 |
|
|
tLumi = myText("#sqrt{s} = %s, L = %s fb^{-1}"%(anaTag,(float(lumi_data)/1000.)),0.17,0.83)
|
278 |
peller |
1.10 |
|
279 |
|
|
unten.cd()
|
280 |
|
|
ROOT.gPad.SetTicks(1,1)
|
281 |
|
|
|
282 |
|
|
ratio, error, ksScore, chiScore = getRatio(d1,allMC,xMin[v],xMax[v])
|
283 |
|
|
ksScore = allMC.KolmogorovTest( d1 )
|
284 |
|
|
chiScore = allMC.Chi2Test( d1 , "UWCHI2/NDF")
|
285 |
|
|
print ksScore
|
286 |
|
|
print chiScore
|
287 |
|
|
ratio.SetStats(0)
|
288 |
|
|
ratio.GetYaxis().SetRangeUser(0,2)
|
289 |
|
|
ratio.GetYaxis().SetNdivisions(502,0)
|
290 |
|
|
ratio.GetXaxis().SetTitle(xAxis[v])
|
291 |
|
|
ratio.Draw("E1")
|
292 |
|
|
ratio.SetTitle("")
|
293 |
|
|
m_one_line = ROOT.TLine(xMin[v],1,xMax[v],1)
|
294 |
|
|
m_one_line.SetLineStyle(7)
|
295 |
|
|
m_one_line.SetLineColor(4)
|
296 |
|
|
m_one_line.Draw("Same")
|
297 |
|
|
|
298 |
nmohr |
1.16 |
tKsChi = myText("#chi_{#nu}^{2} = %.3f K_{s} = %.3f"%(chiScore,ksScore),0.17,0.9,1.5)
|
299 |
peller |
1.10 |
|
300 |
|
|
name = '%s/%s' %(config.get('Directories','plotpath'),options[v][6])
|
301 |
|
|
c.Print(name)
|
302 |
peller |
1.11 |
|
303 |
|
|
os.system('rm %s/tmp_plotCache_%s*'%(config.get('Directories','plotpath'),region))
|
304 |
peller |
1.10 |
print 'i am done!\n'
|
305 |
peller |
1.11 |
|
306 |
peller |
1.5 |
sys.exit(0)
|