ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/VHbbAnalysis/VHbbDataFormats/bin/TMVAClassification.cxx
Revision: 1.1
Committed: Thu Aug 11 18:43:10 2011 UTC (13 years, 9 months ago) by bortigno
Content type: text/plain
Branch: MAIN
CVS Tags: EDMV42_Step2_V8, EDMV42_Step2_V7, EDMV42_Step2_V6, EDMV42_Step2_V5a, EDMV42_Step2_V5, tauCandV42, hbbsubstructDev_11, hbbsubstructDev_10, hbbsubstructDev_9, hbbsubstructDev_8, hbbsubstructDev_7, hbbsubstructDev_6, hbbsubstructDev_5, hbbsubstructDev_4, hbbsubstructDev_3, hbbsubstructDev_2, hbbsubstructDev_1, hbbsubstructDev, V21TauCand_0, EDMV42_Step2_V4a, EDMV42_Step2_V4, EDMV42_Step2_V3, EDMV42_Step2_V2, EDMV42_Step2_V1, EdmV42, EdmV41alpha1, EdmV40alpha1, EdmV40alpha, V21emuCand, EdmV33Jun12v2_consistent, Step2ForV33_v2, Step2ForV33_v1, EdmV33Jun12v2, EdmV33Jun12v1, EdmV33Jun12v0, Step2ForV32_v2, Step2ForV32_v1, Step2ForV32_v0, Step2ForV31_v0, EdmV32May24v0, EdmV31May21v1, EdmV31May17v0, EdmV30Apr10, EdmV21Apr10v2, EdmV22May9, EdmV21Apr06, EdmV21Apr10, EdmV21Apr04, EdmV21Apr03, EdmV21Apr2, EdmV21Mar30, EdmV20Mar12, AR_Nov10Ntuple, AR_step2_Oct25, AR_step2_oct19, EdmV11Oct2011, AR_Step2_Oct13, AR_Oct9Ntuple, AR_Oct7_step2ntuple, AR_Oct5Ntuple, EdmV10Oct2011, EdmV9Sept2011, Sept19th2011_2, Sept19th2011, Sept19th, VHNtupleV9_AR1, VHSept15_AR1, Sept14th2011_2, Sept14th2011_AR1, Sept14th2011, Sept13th2011, AR_Sep8_LightNtuple, VHBB_EDMNtupleV3, HEAD
Branch point for: V42TauCandidate, hbbsubstructDevPostHCP, V21TauCand, V21emuCandidate
Log Message:
MVA training

File Contents

# User Rev Content
1 bortigno 1.1 // @(#)root/tmva $Id: TMVAClassification.cxx 37399 2010-12-08 15:22:07Z evt $
2     /**********************************************************************************
3     * Project : TMVA - a ROOT-integrated toolkit for multivariate data analysis *
4     * Package : TMVA *
5     * Exectuable: TMVAClassification *
6     * *
7     * This executable provides examples for the training and testing of the *
8     * TMVA classifiers. *
9     * *
10     * As input data is used a toy-MC sample consisting of four Gaussian-distributed *
11     * and linearly correlated input variables. *
12     * *
13     * The methods to be used can be switched on and off by means of booleans. *
14     * *
15     * Compile and run the example with the following commands *
16     * *
17     * make *
18     * ./TMVAClassification <Methods> *
19     * *
20     * where: <Methods> = "method1 method2" *
21     * are the TMVA classifier names *
22     * *
23     * example: *
24     * ./TMVAClassification Fisher LikelihoodPCA BDT *
25     * *
26     * If no method given, a default set is of classifiers is used *
27     * *
28     * The output file "TMVA.root" can be analysed with the use of dedicated *
29     * macros (simply say: root -l <../macros/macro.C>), which can be conveniently *
30     * invoked through a GUI launched by the command *
31     * *
32     * root -l ./TMVAGui.C *
33     **********************************************************************************/
34    
35     #include <cstdlib>
36     #include <iostream>
37     #include <map>
38     #include <string>
39    
40     #include "TChain.h"
41     #include "TFile.h"
42     #include "TTree.h"
43     #include "TString.h"
44     #include "TObjString.h"
45     #include "TSystem.h"
46     #include "TROOT.h"
47    
48     #include "TMVA/Factory.h"
49     #include "TMVA/Tools.h"
50     #include "TMVA/Config.h"
51    
52     #include "../macros/samples.h"
53    
54     // read input data file with ascii format (otherwise ROOT) ?
55     Bool_t ReadDataFromAsciiIFormat = kFALSE;
56    
57     int main( int argc, char** argv )
58     {
59     //---------------------------------------------------------------
60     // Default MVA methods to be trained + tested
61     std::map<std::string,int> Use;
62    
63     // --- Cut optimisation
64     Use["Cuts"] = 1;
65     Use["CutsD"] = 0;
66     Use["CutsPCA"] = 0;
67     Use["CutsGA"] = 0;
68     Use["CutsSA"] = 0;
69     //
70     // --- 1-dimensional likelihood ("naive Bayes estimator")
71     Use["Likelihood"] = 1;
72     Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings)
73     Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
74     Use["LikelihoodKDE"] = 0;
75     Use["LikelihoodMIX"] = 0;
76     //
77     // --- Mutidimensional likelihood and Nearest-Neighbour methods
78     Use["PDERS"] = 0;
79     Use["PDERSD"] = 0;
80     Use["PDERSPCA"] = 0;
81     Use["PDEFoam"] = 0;
82     Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting
83     Use["KNN"] = 0; // k-nearest neighbour method
84     //
85     // --- Linear Discriminant Analysis
86     Use["LD"] = 0; // Linear Discriminant identical to Fisher
87     Use["Fisher"] = 0;
88     Use["FisherG"] = 0;
89     Use["BoostedFisher"] = 0; // uses generalised MVA method boosting
90     Use["HMatrix"] = 0;
91     //
92     // --- Function Discriminant analysis
93     Use["FDA_GA"] = 0; // minimisation of user-defined function using Genetics Algorithm
94     Use["FDA_SA"] = 0;
95     Use["FDA_MC"] = 0;
96     Use["FDA_MT"] = 0;
97     Use["FDA_GAMT"] = 0;
98     Use["FDA_MCMT"] = 0;
99     //
100     // --- Neural Networks (all are feed-forward Multilayer Perceptrons)
101     Use["MLP"] = 0; // Recommended ANN
102     Use["MLPBFGS"] = 0; // Recommended ANN with optional training method
103     Use["MLPBNN"] = 0; // Recommended ANN with BFGS training method and bayesian regulator
104     Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH
105     Use["TMlpANN"] = 0; // ROOT's own ANN
106     //
107     // --- Support Vector Machine
108     Use["SVM"] = 0;
109     //
110     // --- Boosted Decision Trees
111     Use["BDT"] = 1; // uses Adaptive Boost
112     Use["BDTG"] = 0; // uses Gradient Boost
113     Use["BDTB"] = 0; // uses Bagging
114     Use["BDTD"] = 0; // decorrelation + Adaptive Boost
115     //
116     // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
117     Use["RuleFit"] = 0;
118     // ---------------------------------------------------------------
119    
120     std::cout << std::endl << "==> Start TMVAClassification" << std::endl;
121    
122     bool batchMode(false);
123     bool useDefaultMethods(true);
124    
125     // // Select methods (don't look at this code - not of interest)
126     // for (int i=1; i<argc; i++) {
127     // std::string regMethod(argv[i]);
128     // if(regMethod=="-b" || regMethod=="--batch") {
129     // batchMode=true;
130     // continue;
131     // }
132     // if (Use.find(regMethod) == Use.end()) {
133     // std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
134     // for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
135     // std::cout << std::endl;
136     // return 1;
137     // }
138     // useDefaultMethods = false;
139     // }
140    
141     // if (!useDefaultMethods) {
142     // for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
143     // for (int i=1; i<argc; i++) {
144     // std::string regMethod(argv[i]);
145     // if(regMethod=="-b" || regMethod=="--batch") continue;
146     // Use[regMethod] = 1;
147     // }
148     // }
149    
150     // --------------------------------------------------------------------------------------------------
151    
152     // --- Here the preparation phase begins
153     // string channel="Zmm";
154    
155     // std::cout << "argc = " << argc << std::endl;
156     std::string channel;
157     if( argc > 1 )
158     channel=argv[1];
159     else{
160     std::cerr << "no channel selected" << std::endl;
161     return -1;
162     }
163     // Create a ROOT output file where TMVA will store ntuples, histograms, etc.
164     TString outfileName( "TMVA.root" );
165     outfileName=channel+outfileName;
166     TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
167    
168     // Create the factory object. Later you can choose the methods
169     // whose performance you'd like to investigate. The factory is
170     // the only TMVA object you have to interact with
171     //
172     // The first argument is the base of the name of all the
173     // weightfiles in the directory weight/
174     //
175     // The second argument is the output file for the training results
176     // All TMVA output can be suppressed by removing the "!" (not) in
177     // front of the "Silent" argument in the option string
178     TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
179     "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
180    
181     // If you wish to modify default settings
182     // (please check "src/Config.h" to see all available global options)
183     // (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0;
184     // (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory";
185     (TMVA::gConfig().GetIONames()).fWeightFileExtension = channel+"_weight";
186    
187     // Define the input variables that shall be used for the MVA training
188     // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
189     // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
190    
191     float BR115 = 0.704;
192     float BR120 = 0.648;
193     float BR125 = 0.577;
194     float BR130 = 0.493;
195     float BR135 = 0.403;
196    
197     // 115
198     float xSecWH = 0.7546*BR115;
199     float xSecZH = 0.4107*BR115;
200     float backgroundXsecWJets = 31314;
201     float backgroundXsecDY = 3048;
202     float backgroundXsecWZ = 18.3;
203     float backgroundXsecWW = 42.9;
204     float backgroundXsecZZ = 5.9;
205     float backgroundXsecTT = 165;
206     float backgroundXsecT_tchannel = 41.92;
207     float backgroundXsecT_tWDRchannel = 7.87;
208     float backgroundXsecTbar_tchannel = 22.65;
209     float backgroundXsecTbar_tWDRchannel = 7.87;
210     // float backgroundXsecTbar_tWDSchannel = 25;
211    
212     //get Lumi from something serius
213     float lumi = 2047.0+8872.0;
214    
215     float signalXsec;
216     std::vector<double> backgroundXsec;
217     std::vector<TFile*> myInputFile_signal;
218     std::vector<TFile*> myInputFile_background;
219    
220     TCut mycuts = "";
221     TCut mycutb = "";
222     bool origCuts = true;
223    
224    
225     //signal for Z
226     if( channel == "Zmm" or channel == "Zee" or channel == "Znn" ){
227     myInputFile_signal.push_back(TFile::Open("MC_files/file_ZH_ZToLL_HToBB_M-115_7TeV-powheg-herwigppTreeFile.root"));
228     signalXsec = xSecZH;
229     }
230     //signal for W
231     if( channel == "Wm" or channel == "We" ){
232     myInputFile_signal.push_back(TFile::Open("MC_files/file_ZH_ZToLL_HToBB_M-115_7TeV-powheg-herwigppTreeFile.root"));
233     signalXsec = xSecWH;
234     }
235     //background
236     myInputFile_background.push_back(TFile::Open("MC_files/file_DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauolaTreeFile.root"));
237     backgroundXsec.push_back(backgroundXsecDY);
238     myInputFile_background.push_back(TFile::Open("MC_files//file_WJetsToLNu_TuneZ2_7TeV-madgraph-tauolaTreeFile.root"));
239     backgroundXsec.push_back(backgroundXsecWJets);
240     myInputFile_background.push_back(TFile::Open("MC_files//file_TTJets_TuneZ2_7TeV-madgraph-tauolaTreeFile.root"));
241     backgroundXsec.push_back(backgroundXsecTT);
242     myInputFile_background.push_back(TFile::Open("MC_files//file_T_TuneZ2_t-channel_7TeV-powheg-tauolaTreeFile.root"));
243     backgroundXsec.push_back(backgroundXsecT_tchannel);
244     myInputFile_background.push_back(TFile::Open("MC_files//file_T_TuneZ2_tW-channel-DR_7TeV-powheg-tauolaTreeFile.root"));
245     backgroundXsec.push_back(backgroundXsecT_tWDRchannel);
246     myInputFile_background.push_back(TFile::Open("MC_files//file_Tbar_TuneZ2_t-channel_7TeV-powheg-tauolaTreeFile.root"));
247     backgroundXsec.push_back(backgroundXsecTbar_tchannel);
248     myInputFile_background.push_back(TFile::Open("MC_files//file_Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauolaTreeFile.root"));
249     backgroundXsec.push_back(backgroundXsecTbar_tWDRchannel);
250     // myInputFile_background.push_back(TFile::Open("MC_files//file_Tbar_TuneZ2_tW-channel-DS_7TeV-powheg-tauolaTreeFile.root"));
251     // backgroundXsec.push_back(backgroundXsecTbar_tWDSchannel);
252     myInputFile_background.push_back(TFile::Open("MC_files///file_ZZ_TuneZ2_7TeV_pythia6_tauolaTreeFile.root"));
253     backgroundXsec.push_back(backgroundXsecZZ);
254     myInputFile_background.push_back(TFile::Open("MC_files/file_WW_TuneZ2_7TeV_pythia6_tauolaTreeFile.root"));
255     backgroundXsec.push_back(backgroundXsecWW);
256     //WZ still missing
257     // myInputFile_background.push_back(TFile::Open("MC_files/"));
258     // backgroundXsec.push_back(backgroundXsecWZ);
259     myInputFile_background.push_back(TFile::Open("MC_files//file_ZZ_TuneZ2_7TeV_pythia6_tauolaTreeFile.root"));
260     backgroundXsec.push_back(backgroundXsecZZ);
261    
262    
263     if(channel == "Zmm"){
264     factory->AddVariable( "bbMass", "bb mass" , "GeV/c2", 'F' );
265     factory->AddVariable( "VMass", "vector mass" , "GeV/c2", 'F' );
266     factory->AddVariable( "bbPt", "bb pt" , "GeV/c" , 'F' );
267     factory->AddVariable( "VPt", "vector pt" , "GeV/c" , 'F' );
268     factory->AddVariable( "btag1", "btag1" , "csv" , 'F' );
269     factory->AddVariable( "btag2", "btag2" , "csv" , 'F' );
270     factory->AddVariable( "DeltaPhiVH", "DeltaPhi(V,H)" , "" , 'F' );
271     factory->AddVariable( "DeltaEtabb", "DeltaEta(b,b)" , "" , 'F' );
272    
273     //PRESELECTION
274     mycuts="(bPt1>20) && (bPt2>20) && (btag1>0.5) && (btag2>0.5) && (NaddJet<2) && (DeltaPhiVH>2.4)";
275     mycutb="(bPt1>20) && (bPt2>20) && (btag1>0.5) && (btag2>0.5) && (NaddJet<2) && (DeltaPhiVH>2.4)";
276    
277     }
278     else if(channel == "Zee"){
279     factory->AddVariable( "bbMass", "bb mass" , "GeV/c2", 'F' );
280     factory->AddVariable( "VMass", "vector mass" , "GeV/c2", 'F' );
281     factory->AddVariable( "bbPt", "bb pt" , "GeV/c" , 'F' );
282     factory->AddVariable( "VPt", "vector pt" , "GeV/c" , 'F' );
283     factory->AddVariable( "btag1", "btag1" , "csv" , 'F' );
284     factory->AddVariable( "btag2", "btag2" , "csv" , 'F' );
285     factory->AddVariable( "DeltaPhiVH", "DeltaPhi(V,H)" , "" , 'F' );
286     factory->AddVariable( "DeltaEtabb", "DeltaEta(b,b)" , "" , 'F' );
287    
288     //PRESELECTION
289     mycuts="bPt1>20 && bPt2>20 && btag1>0.5 && btag2>0.5 && NaddJet<2 && DeltaPhiVH>2.4";
290     mycutb="bPt1>20 && bPt2>20 && btag1>0.5 && btag2>0.5 && NaddJet<2 && DeltaPhiVH>2.4";
291    
292     }
293     else if(channel == "Znn"){
294     factory->AddVariable( "bbMass", "bb mass" , "GeV/c2", 'F' );
295     factory->AddVariable( "bbPt", "bb pt" , "GeV/c" , 'F' );
296     factory->AddVariable( "pfMET", "met pt" , "GeV/c" , 'F' );
297     factory->AddVariable( "btag1", "btag1" , "csv" , 'F' );
298     factory->AddVariable( "btag2", "btag2" , "csv" , 'F' );
299     factory->AddVariable( "DeltaPhiVH", "DeltaPhi(V,H)" , "" , 'F' );
300     //NaddJet is imposed to be 0
301     // factory->AddVariable( "NaddJet", "NaddJet" , "" , 'F' );
302    
303     //PRESELECTION
304     mycuts="bPt1>80 && bPt2>20 && bbPt>160 && btag1>0.5 && btag2>0.5 && NaddJet<1 && deltaPhipfMETjet1>0.5 && deltaPhipfMETjet2 && pfMETsig>5";
305     mycutb="bPt1>80 && bPt2>20 && bbPt>160 && btag1>0.5 && btag2>0.5 && NaddJet<1 && deltaPhipfMETjet1>0.5 && deltaPhipfMETjet2 && pfMETsig>5";
306    
307     }
308     else if(channel == "We"){
309     factory->AddVariable( "bbMass", "bb mass" , "GeV/c2", 'F' );
310     factory->AddVariable( "bbPt", "bb pt" , "GeV/c" , 'F' );
311     factory->AddVariable( "VPt", "vector pt" , "GeV/c" , 'F' );
312     factory->AddVariable( "btag1", "btag1" , "csv" , 'F' );
313     factory->AddVariable( "btag2", "btag2" , "csv" , 'F' );
314     factory->AddVariable( "DeltaPhiVH", "DeltaPhi(V,H)" , "" , 'F' );
315     factory->AddVariable( "DeltaEtabb", "DeltaEta(b,b)" , "" , 'F' );
316     //NaddJet is imposed to be 0
317     // factory->AddVariable( "NaddJet", "NaddJet" , "" , 'F' );
318    
319     //PRESELECTION
320     mycuts="bPt1>30 && bPt2>30 && bbPt>150 && VPt>150 && btag1>0.4 && btag2>0.4 && NaddJet<1 && pfMETsig>2";
321     mycutb="bPt1>30 && bPt2>30 && bbPt>150 && VPt>150 && btag1>0.4 && btag2>0.4 && NaddJet<1 && pfMETsig>2";
322    
323     }
324     else if(channel == "Wm"){
325     factory->AddVariable( "bbMass", "bb mass" , "GeV/c2", 'F' );
326     factory->AddVariable( "bbPt", "bb pt" , "GeV/c" , 'F' );
327     factory->AddVariable( "VPt", "vector pt" , "GeV/c" , 'F' );
328     factory->AddVariable( "btag1", "btag1" , "csv" , 'F' );
329     factory->AddVariable( "btag2", "btag2" , "csv" , 'F' );
330     factory->AddVariable( "DeltaPhiVH", "DeltaPhi(V,H)" , "" , 'F' );
331     factory->AddVariable( "DeltaEtabb", "DeltaEta(b,b)" , "" , 'F' );
332     //NaddJet is imposed to be 0
333     // factory->AddVariable( "NaddJet", "NaddJet" , "" , 'F' );
334    
335     //PRESELECTION
336     mycuts="bPt1>30 && bPt2>30 && bbPt>150 && VPt>150 && btag1>0.4 && btag2>0.4 && NaddJet<1";
337     mycutb="bPt1>30 && bPt2>30 && bbPt>150 && VPt>150 && btag1>0.4 && btag2>0.4 && NaddJet<1";
338    
339     }
340    
341     std::vector<Sample> samples_signal;
342     std::vector<Sample> samples_background;
343    
344     std::string str_toReplace("TreeFile");
345    
346     std::vector<TTree*> myInputTree_signal;
347     std::vector<TTree*> myInputTree_backgound;
348     for(unsigned int i = 0; i < myInputFile_signal.size(); ++i ){
349     std::string name = myInputFile_signal.at(0)->GetName();
350     samples_signal.push_back(Sample(signalXsec,"signal", name.replace(name.find("TreeFile"),str_toReplace.length() ,"_histos" ) , kRed,false));
351     TTree * tmpTree = (TTree*)myInputFile_signal.at(i)->Get("treeMVA");
352     factory->AddSignalTree( tmpTree , samples_signal.at(i).scale(lumi) );
353     }
354     for(unsigned int i = 0; i < myInputFile_background.size(); ++i ){
355     std::string name = myInputFile_background.at(i)->GetName();
356     samples_background.push_back(Sample(backgroundXsec.at(i),"background", name.replace(name.find("TreeFile"),str_toReplace.length() ,"_histos" ) ,i+10,false));
357     TTree * tmpbackTree = (TTree*)myInputFile_background.at(i)->Get("treeMVA");
358     factory->AddBackgroundTree( tmpbackTree, samples_background.at(i).scale(lumi) );
359     }
360    
361     //from Michele and Matt
362     factory->PrepareTrainingAndTestTree( mycuts, mycutb,
363     "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
364    
365    
366     // ---- Book MVA methods
367     //
368     // Please lookup the various method configuration options in the corresponding cxx files, eg:
369     // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
370     // it is possible to preset ranges in the option string in which the cut optimisation should be done:
371     // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable
372    
373     // Cut optimisation
374     if (Use["Cuts"])
375     factory->BookMethod( TMVA::Types::kCuts, "Cuts",
376     "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );
377    
378     if (Use["CutsD"])
379     factory->BookMethod( TMVA::Types::kCuts, "CutsD",
380     "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
381    
382     if (Use["CutsPCA"])
383     factory->BookMethod( TMVA::Types::kCuts, "CutsPCA",
384     "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" );
385    
386     if (Use["CutsGA"])
387     factory->BookMethod( TMVA::Types::kCuts, "CutsGA",
388     "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" );
389    
390     if (Use["CutsSA"])
391     factory->BookMethod( TMVA::Types::kCuts, "CutsSA",
392     "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
393    
394     // Likelihood ("naive Bayes estimator")
395     if (Use["Likelihood"])
396     factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",
397     "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
398    
399     // Decorrelated likelihood
400     if (Use["LikelihoodD"])
401     factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD",
402     "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" );
403    
404     // PCA-transformed likelihood
405     if (Use["LikelihoodPCA"])
406     factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA",
407     "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" );
408    
409     // Use a kernel density estimator to approximate the PDFs
410     if (Use["LikelihoodKDE"])
411     factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodKDE",
412     "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" );
413    
414     // Use a variable-dependent mix of splines and kernel density estimator
415     if (Use["LikelihoodMIX"])
416     factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodMIX",
417     "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" );
418    
419     // Test the multi-dimensional probability density estimator
420     // here are the options strings for the MinMax and RMS methods, respectively:
421     // "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
422     // "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
423     if (Use["PDERS"])
424     factory->BookMethod( TMVA::Types::kPDERS, "PDERS",
425     "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" );
426    
427     if (Use["PDERSD"])
428     factory->BookMethod( TMVA::Types::kPDERS, "PDERSD",
429     "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" );
430    
431     if (Use["PDERSPCA"])
432     factory->BookMethod( TMVA::Types::kPDERS, "PDERSPCA",
433     "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" );
434    
435     // Multi-dimensional likelihood estimator using self-adapting phase-space binning
436     if (Use["PDEFoam"])
437     factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam",
438     "H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0333:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
439    
440     if (Use["PDEFoamBoost"])
441     factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoamBoost",
442     "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" );
443    
444     // K-Nearest Neighbour classifier (KNN)
445     if (Use["KNN"])
446     factory->BookMethod( TMVA::Types::kKNN, "KNN",
447     "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
448    
449     // H-Matrix (chi2-squared) method
450     if (Use["HMatrix"])
451     factory->BookMethod( TMVA::Types::kHMatrix, "HMatrix", "!H:!V" );
452    
453     // Linear discriminant (same as Fisher discriminant)
454     if (Use["LD"])
455     factory->BookMethod( TMVA::Types::kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
456    
457     // Fisher discriminant (same as LD)
458     if (Use["Fisher"])
459     factory->BookMethod( TMVA::Types::kFisher, "Fisher", "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
460    
461     // Fisher with Gauss-transformed input variables
462     if (Use["FisherG"])
463     factory->BookMethod( TMVA::Types::kFisher, "FisherG", "H:!V:VarTransform=Gauss" );
464    
465     // Composite classifier: ensemble (tree) of boosted Fisher classifiers
466     if (Use["BoostedFisher"])
467     factory->BookMethod( TMVA::Types::kFisher, "BoostedFisher", "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2");
468    
469     // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
470     if (Use["FDA_MC"])
471     factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
472     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );
473    
474     if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
475     factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
476     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
477    
478     if (Use["FDA_SA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
479     factory->BookMethod( TMVA::Types::kFDA, "FDA_SA",
480     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
481    
482     if (Use["FDA_MT"])
483     factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
484     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
485    
486     if (Use["FDA_GAMT"])
487     factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
488     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
489    
490     if (Use["FDA_MCMT"])
491     factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
492     "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );
493    
494     // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
495     if (Use["MLP"])
496     factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );
497    
498     if (Use["MLPBFGS"])
499     factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );
500    
501     if (Use["MLPBNN"])
502     factory->BookMethod( TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ); // BFGS training with bayesian regulators
503    
504     // CF(Clermont-Ferrand)ANN
505     if (Use["CFMlpANN"])
506     factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N" ); // n_cycles:#nodes:#nodes:...
507    
508     // Tmlp(Root)ANN
509     if (Use["TMlpANN"])
510     factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3" ); // n_cycles:#nodes:#nodes:...
511    
512     // Support Vector Machine
513     if (Use["SVM"])
514     factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );
515    
516     // Boosted Decision Trees
517     if (Use["BDTG"]) // Gradient Boost
518     factory->BookMethod( TMVA::Types::kBDT, "BDTG",
519     "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:NNodesMax=5" );
520    
521     if (Use["BDT"]) // Adaptive Boost
522     factory->BookMethod( TMVA::Types::kBDT, "BDT",
523     "!H:!V:NTrees=850:nEventsMin=150:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
524    
525     if (Use["BDTB"]) // Bagging
526     factory->BookMethod( TMVA::Types::kBDT, "BDTB",
527     "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
528    
529     if (Use["BDTD"]) // Decorrelation + Adaptive Boost
530     factory->BookMethod( TMVA::Types::kBDT, "BDTD",
531     "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );
532    
533     // RuleFit -- TMVA implementation of Friedman's method
534     if (Use["RuleFit"])
535     factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
536     "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );
537    
538     // For an example of the category classifier, see: TMVAClassificationCategory
539    
540     // For an example of the category classifier usage, see: TMVAClassificationCategory
541    
542     // --------------------------------------------------------------------------------------------------
543    
544     // ---- Now you can optimize the setting (configuration) of the MVAs using the set of training events
545    
546     // factory->OptimizeAllMethods("SigEffAt001","Scan");
547     // factory->OptimizeAllMethods("ROCIntegral","GA");
548    
549     // --------------------------------------------------------------------------------------------------
550    
551     // ---- Now you can tell the factory to train, test, and evaluate the MVAs
552    
553     // Train MVAs using the set of training events
554     factory->TrainAllMethods();
555    
556     // ---- Evaluate all MVAs using the set of test events
557     factory->TestAllMethods();
558    
559     // ----- Evaluate and compare performance of all configured MVAs
560     factory->EvaluateAllMethods();
561    
562     // --------------------------------------------------------------
563    
564     // Save the output
565     outputFile->Close();
566    
567     std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl
568     << "==> TMVAClassification is done!" << std::endl
569     << std::endl
570     << "==> To view the results, launch the GUI: \"root -l ./TMVAGui.C\"" << std::endl
571     << std::endl;
572    
573     // Clean up
574     delete factory;
575     }
576