1 |
arizzi |
1.1 |
#ifndef MULTITHRESHOLDEFFICIENCY_H
|
2 |
|
|
#define MULTITHRESHOLDEFFICIENCY_H
|
3 |
|
|
#include <math.h>
|
4 |
|
|
#include <iostream>
|
5 |
|
|
#include <vector>
|
6 |
|
|
using namespace std;
|
7 |
|
|
class MultiThresholdEfficiency
|
8 |
|
|
{
|
9 |
|
|
public:
|
10 |
|
|
MultiThresholdEfficiency(int nOfThresholds) : thresholds(nOfThresholds) {}
|
11 |
|
|
|
12 |
|
|
//thresholds are from tigther to looser
|
13 |
|
|
virtual bool filter(vector<int> numberOfPassPerThreshold);
|
14 |
|
|
|
15 |
|
|
//A vector with, for each object the efficiency of passing threshold N while notpassing N-1
|
16 |
|
|
float weight(vector<vector<float> > input);
|
17 |
|
|
|
18 |
|
|
private:
|
19 |
|
|
int thresholds;
|
20 |
|
|
|
21 |
|
|
};
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
bool MultiThresholdEfficiency::filter(std::vector<int> t)
|
25 |
|
|
{
|
26 |
|
|
// One high threshold and two low threshold
|
27 |
|
|
return t[0] >= 1 && t[1] >= 2;
|
28 |
|
|
}
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
float MultiThresholdEfficiency::weight(vector<vector<float> > objects)
|
33 |
|
|
{
|
34 |
|
|
int nobjects=objects.size();
|
35 |
|
|
std::vector<int> comb(objects.size());
|
36 |
|
|
for(int i=0;i < objects.size(); i++) comb[i]=0;
|
37 |
|
|
int idx=0;
|
38 |
|
|
int max=thresholds+1; //
|
39 |
|
|
float p=0,tot=0;
|
40 |
|
|
if(objects.size()==0) return 0.;
|
41 |
|
|
while(comb[objects.size()-1] < max)
|
42 |
|
|
{
|
43 |
|
|
//std::cout << std::endl << "New comb" << std::endl;
|
44 |
|
|
// for(int i=0;i < objects.size(); i++) {std::cout << comb[i] << " ";}
|
45 |
|
|
// std::cout << std::endl;
|
46 |
|
|
std::vector<int> pass;
|
47 |
|
|
for(int j=0;j<thresholds;j++) pass.push_back(0);
|
48 |
|
|
|
49 |
|
|
float thisCombinationProbability=1.;
|
50 |
|
|
// std::cout << "OBJ Probs: ";
|
51 |
|
|
for(size_t j=0;j<nobjects;j++) // loop on objects
|
52 |
|
|
{
|
53 |
|
|
float cumulative=1.;
|
54 |
|
|
for(int n=0;n<comb[j];n++) cumulative*= (1.-objects[j][n]); // 10 20 70 10/100,20/90 90/100*70/90
|
55 |
|
|
thisCombinationProbability*=cumulative;
|
56 |
|
|
if(comb[j]< thresholds) {
|
57 |
|
|
thisCombinationProbability*=(objects[j])[comb[j]];
|
58 |
|
|
// std::cout << cumulative*(objects[j])[comb[j]] << " ";
|
59 |
|
|
}
|
60 |
|
|
/* else
|
61 |
|
|
{
|
62 |
|
|
std::cout << cumulative << " " ;
|
63 |
|
|
}*/
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
for(size_t k=0;k< thresholds; k++ ) // loop on threshold
|
67 |
|
|
{
|
68 |
|
|
bool passed = ( k >= comb[j] ) ; //k=0, is the tightest, passed only if comb[j] = 0, k=1 pass if comb 0 or 1
|
69 |
|
|
if(passed) pass[k]++;
|
70 |
|
|
}
|
71 |
|
|
}
|
72 |
|
|
// std::cout << endl;
|
73 |
|
|
if(filter(pass)) p+=thisCombinationProbability;
|
74 |
|
|
tot+=thisCombinationProbability;
|
75 |
|
|
// std::cout << thisCombinationProbability << " " << p << " " << tot<< std::endl;
|
76 |
|
|
while (comb[idx] == max -1 && idx+1 < objects.size()) idx++; // find first object for which we did not already test all configs
|
77 |
|
|
// next combination
|
78 |
|
|
comb[idx]++; // test a new config for that jet
|
79 |
|
|
for(int i=0;i<idx;i++) { comb[i]=0; } // reset the tested configs for all previous objects
|
80 |
|
|
idx=0;
|
81 |
|
|
}
|
82 |
|
|
if( fabs(tot-1.) > 0.01 )
|
83 |
|
|
{
|
84 |
|
|
std::cout << "ERROR, total must be one " << tot << std::endl;
|
85 |
|
|
}
|
86 |
|
|
return p;
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
#endif
|
90 |
|
|
|