ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixABCD.tex
Revision: 1.4
Committed: Thu Oct 16 13:02:43 2008 UTC (16 years, 6 months ago) by smorovic
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +5 -5 lines
Error occurred while calculating annotation data.
Log Message:
misplaced values for WZ/bkg

File Contents

# Content
1 \newpage
2 \appendix
3 \clearpage
4 \section{Signal estimation using $ABCD$ method}
5
6
7 \begin{figure}[hbt]
8 \begin{center}
9 \scalebox{0.4}{\includegraphics{figs/abcd.eps}}
10 \caption{Illustration of ABCD method bin definition for $W \rightarrow \mu\nu$ channels.}
11 \label{fig:ABCDl}
12 \end{center}
13 \end{figure}
14
15 %$ABCD$ method accuracy is dependant on the wea
16 %$ABCD$ method accuracy is better if the method is based on analysis variables which are
17 %weakly correlated, for both signal and background.
18 We estimate \WZ signal yield with final selection cuts for all four analysis channels.
19 Selected events are sorted to non-overlapping bins $A$,$B$,$C$ and $D$ as illustrated in
20 figure \ref{fig:ABCDl}.
21
22 $ABCD$ method accurracy is better if we use variables for which correlation is minimal for both signal and background.
23 \W transverse mass and isolation are usually a suitable combination and were chosen for this analysis.
24 For $W \rightarrow \mu\nu$ channels, $A$, $B$ contain events with
25 muon tracker $P_t$ Isolation $P_t Iso < 2$, while $A$, $C$ contain events with \W
26 transverse mass $ MT_W > 50 GeV$. For $W \rightarrow e\nu$ channels we use {\tt SimpleTight}
27 cut and \W transverse mass cut. All other analysis cuts are applied.
28
29 For the background, assumption of weak correlation is formulated as
30
31 \begin {equation}
32 F_b = \frac{B_A}{B_B} \approx F_b' = \frac{B_C}{B_D}
33 \label{eq_ABCD_bkg}
34 \end {equation}
35
36 $S_i$ and $B_i$ represent signal and background event numbers in $i=A,B,C,D$ bins.
37 For signal we first calculate factors $F_{MT_W}=S_{A+C}/S_{A+B+C+D}$ and
38 $F_{ISO}=S_{A+B}/S_{A+B+C+D}$, defined as fraction of events passing
39 \W transverse mass and the isolation cut respectively.
40 In this analysis they are extracted from signal Monte Carlo sample.
41 From data their values are usually calculated using control samples (templates) $\Z \rightarrow \mumu$
42 or $\Z \rightarrow \epem$ where one lepton simulates neutrino from the \W
43 decay and \Z invariant mass is rescaled to the \W mass.
44
45 Assuming variables' weak correlation for signal, we determine factors $b$, $c$ and $d$ which will be used in calculation of the signal yield in bin $A$
46
47 \begin {eqnarray}
48 b &=& \frac{S_B}{S_A} \approx \frac{S_D}{S_C} \approx \frac{1-F_{MT_W}}{F_{MT_W}} \nonumber \\
49 c &=& \frac{S_C}{S_A} \approx \frac{S_D}{S_B} \approx \frac{1-F_{ISO}}{F_{ISO}} \nonumber \\
50 d &=& \frac{S_D}{S_A} \approx b*c
51 \label{eq_ABCD1}
52 \end {eqnarray}
53
54 This gives a set of equations representing measured sum of signal and background events in each bin, $N_A$, $N_B$, $N_C$ and $N_D$
55
56 \begin{eqnarray}
57 N_A =& S_A + B_A & \quad N_B = b*S_A + B_B \nonumber \\
58 N_C =& c*S_A + B_C & \quad N_D = d*S_A + B_D
59 \label{eq_ABCD2}
60 \end{eqnarray}
61
62 Solving equations \ref{eq_ABCD_bkg}, \ref{eq_ABCD2} we get expression for the number of signal events in bin A, which has all selection cuts applied
63
64 \begin {equation}
65 S_A = \frac{N_A*N_D - N_B*N_C}{N_D+d*N_A - c*N_B - b*N_C}
66 \end {equation}
67
68 Equation \ref{eq_ABCDsigma} is a term for statistical error of signal in bin $A$, $\sigma_{S_A}$. Similarly we determine the background statistical error, $\sigma_{B_A}$, using relation $B_A = N_A - S_A$.
69 In table \ref{tab:ABCD_result} signal and background yields are compared for $ABCD$ method and Monte Carlo.
70
71
72
73 \begin{table}[t]
74 \begin{center}
75 \begin{tabular}{lccccc} \hline \hline
76 & $3e$ & $2e1\mu$ & $1e2\mu$ & $3\mu$\\ \hline
77 %F_{ISO} & $1$ & $2$ & $3$ &
78 %F_{MT_W} & $1$ & $2$ & $3$ &
79 $S_A = N^{\WZ}$ (MC) & 7.9 $\pm$0.2 & 8.0 $\pm$0.3 & 8.9 $\pm$ 0.3 & 10.0 $\pm$ 0.3 \\
80 $S_A = N^{\WZ}$ (ABCD) & 8.6 $\pm$1.7 & 9.0 $\pm$0.3 & 7.9 $\pm$1.6 & 11.3 $\pm$ 0.5 \\ \hline
81 $B_A = N\{ZZ, Zbb, Z\gamma, Z+jets, W+jets, t\bar{t}\}$ (MC) & 6.2 $\pm$0.9 & 1.4 $\pm$0.4 & 4.5 $\pm$0.8 & 1.5 $\pm$ 0.3 \\
82 $B_A = N\{ZZ, Zbb, Z\gamma, Z+jets, W+jets, t\bar{t}\}$ (ABCD) & 5.5 $\pm$2.4 & 0.4 $\pm$0.9 & 5.4 $\pm$2.2 & 0.2 $\pm$ 0.9 \\
83 \hline
84 \end{tabular}
85 \caption{Number of signal and background events for integrated luminosity of 300
86 pb$^{-1}$ calculated using Monte Carlo and ABCD method. Errors are statistical.}
87 \label{tab:ABCD_result}
88 \end{center}
89 \end{table}
90
91 \begin {eqnarray}
92 F &\equiv& N_A*N_D - N_B*N_C \nonumber \\
93 G &\equiv& N_D + d*N_A - b*N_C - c*N_B \nonumber \\
94 \sigma_{S_A}^2 &= \frac{1}{G^4} * & [\
95 ( ( N_D*G - F*d) *\sigma_{N_A})^2 \
96 + ( (-N_C*G + F*c) *\sigma_{N_B})^2 \nonumber \\
97 & &+ ( (-N_B*G + F*b) *\sigma_{N_C})^2 \
98 + ( ( N_A*G - F ) *\sigma_{N_D})^2 \nonumber \\
99 & &+ ( F*(-N_C+c*N_A) *\sigma_b)^2 \
100 + ( F*(-N_C+b*N_A) *\sigma_c)^2 \
101 ]
102 \label{eq_ABCDsigma}
103 \end {eqnarray}
104
105
106 A Monte Carlo study was done to estimate variable correlation for signal and background,
107 with results shown in table \ref{tab:ABCD_corrres}. Ideally, ratios $(A/B)/(C/D)$ should be $\approx 1$ for the method
108 to produce accurate result. For $\W\rightarrow \mu \nu$ channels there is indication of a stronger correlation, but for
109 all channels there is a significant statistical error, for both signal and background. We conclude that the accurracy of the method is statistically constrained with currently used samples and the extent of correlations is yet inconclusive.
110
111
112
113 \begin{table}[h]
114 \begin{center}
115 \begin{tabular}{lcccc} \hline \hline
116 MC sample & $3e$ & $2e1\mu$ & $1e2\mu$ & $3\mu$\\ \hline
117 %F_{ISO} & $1$ & $2$ & $3$ &
118 %F_{MT_W} & $1$ & $2$ & $3$ &
119 $\WZ$ A/B & 2.2 $\pm$ 0.1 & 1.9 $\pm$ 0.1 & 2.18 $\pm$ 0.09 & 2.0 $\pm$ 0.1 \\
120 $\WZ$ C/D & 1.8 $\pm$ 0.5 & 1.1 $\pm$ 0.3 & 1.5 $\pm$ 0.4 & 2.5 $\pm$ 0.6 \\ \hline
121 $\WZ$ A/B/(C/D) & 1.2 $\pm$ 0.3 & 1.7 $\pm$ 0.5 & 1.5 $\pm$ 0.4 & 0.8 $\pm$ 0.3 \\ \hline
122 \hline
123 $Background$ A/B & 0.25 $\pm$ 0.04 & 0.22 $\pm$ 0.07 & 0.21 $\pm$ 0.05 & 0.4 $\pm$ 0.1 \\
124 $Background$ C/D & 0.23 $\pm$ 0.04 & 0.08 $\pm$ 0.02 & 0.26 $\pm$ 0.06 & 0.08 $\pm$ 0.04 \\ \hline
125 $Background$ A/B/(C/D) & 1.1 $\pm$ 0.3 & 2.7 $\pm$ 1.1 & 0.8 $\pm$ 0.2 & 5.4 $\pm$ 3.0 \\ \hline
126 \hline
127 \end{tabular}
128 \caption{Bin ratios for signal and background Monte Carlo. Errors are statistical.}
129 \label{tab:ABCD_corrres}
130 \end{center}
131 \end{table}
132