ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex
Revision: 1.12
Committed: Thu Jul 31 16:23:53 2008 UTC (16 years, 9 months ago) by beaucero
Content type: application/x-tex
Branch: MAIN
CVS Tags: Summer08-FinalApproved, HEAD
Changes since 1.11: +13 -13 lines
Log Message:
Steph Bug in ZZ/Zg subtraction

File Contents

# User Rev Content
1 ymaravin 1.9 \subsection{Further cross-checks}
2 ymaravin 1.10 The test described in the previous Section illustrates the robustness of the
3     matrix method to estimate the background correctly for a different
4 ymaravin 1.9 jet flavor composition in the $\Z+jet$ sample.
5    
6     In the following we further scrutinize the details of the background estimation.
7 ymaravin 1.10 We test the performance of the matrix method on a sample selected with the
8     full selection criteria but the requirement on the \W candidate transverse mass.
9     We also test a possibility of extracting the background without categorization
10     of the instrumental background contributions into genuine/fake \Z bosons.
11 beaucero 1.1
12 ymaravin 1.9 \subsubsection{Background estimation without the \W boson transverse mass requirement}
13 ymaravin 1.10 One of the ways to validate the matrix method is a comparison of its background
14     prediction with the MC truth information at different stage of application of the
15 vuko 1.11 \WZ signal selection criteria. We show that the matrix method works well with a very
16 ymaravin 1.10 loose selection criteria (see the Section above). In the following we perform
17     the comparison after applying the full selection criteria but the requirement on the
18     \W candidate transverse mass.
19    
20 vuko 1.11 We repeat the procedure described in Section~\ref{sec:moreDetailsBackground} for
21 ymaravin 1.10 every signature channels and provide the results of background estimation from processes
22     without real \Z boson in Table~\ref{tab:FitNoMWt} and final results in
23     Tables~\ref{tab:FinalNoMWtCutLoose} and \ref{tab:FinalNoMWtCut} for ``Loose''
24     and ``Tight'' requirements on the \W lepton. The results agree with each other
25     within one sigma of uncertainty.
26 beaucero 1.2
27     \begin{table}[h]
28     \begin{center}
29     \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
30     & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
31     genuine \Z boson} \\
32     Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
33 beaucero 1.6 $3e$ Loose &44.6 & 12.7 & 1.6 & 0.4 & 2.0 & 6.6$\pm$4.2 \\\hline
34     $3e$ Tight &13.9 & 5.0 & 0.8 & 0.4 & 1.2 & 3.8$\pm$3.5 \\\hline
35     $2e1mu$ Loose &41.5 & 78.9 & 12.6 & 0 & 12.6 & 16.9$\pm$5.5 \\\hline
36     $2e1mu$ Tight &1.0 & 2.0 & 0.9 & 0 & 0.9 & 1.5$\pm$3.2 \\\hline
37     $2mu1e$ Loose &56.3 & 15.4 & 1.9 & 0 & 1.9 & 6.9$\pm$4.4 \\\hline
38     $2mu1e$ Tight &17.3 & 5.6 & 0.8 & 0 & 0.8 & 4.1$\pm$2.5 \\\hline
39     $3mu$ Loose &43.7 & 84.9 & 12.0 & 0 & 12.0 & 11.0$\pm$5.0 \\\hline
40     $3mu$ Tight &0.8 & 2.3 & 0.3 & 0 & 0.3 & 0.8$\pm$2.8 \\\hline
41 beaucero 1.2 \end{tabular}
42     \end{center}
43 ymaravin 1.9 \caption{Comparison between Monte Carlo truth information and the results of the fit for the background
44     without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The
45 ymaravin 1.10 ``Loose'' and ``Tight'' selection criteria applied on the \W lepton. No requirement is applied on the transverse
46     \W candidate mass.}
47 beaucero 1.2 \label{tab:FitNoMWt}
48     \end{table}
49    
50     \begin{table}[h]
51     \begin{center}
52     \begin{tabular}{lcccc} \hline \hline
53     & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
54 beaucero 1.12 $N$ - ZZ -Z$\gamma$ &71.2$\pm$5.7 &147.2$\pm$1.5 & 87.2$\pm$4.7 & 157.7$\pm$2.0\\ \hline
55 ymaravin 1.10 $N^{non genuine~Z}$ (Fit) &6.6$\pm$4.2 &16.9$\pm$5.5 & 6.9$\pm$ 4.4 & 11.0$\pm$5.0\\ \hline
56 beaucero 1.12 $N^{genuine~Z}$ (matrix method) &52.6 $\pm$14.8 &123.2 $\pm$8.8 & 70.3 $\pm$13.1 & 137.0 $\pm$ 8.9\\ \hline
57     $N^{\WZ}$ &12.0$\pm$16.4 &7.0 $\pm$10.5 &10.0 $\pm$14.6 & 9.7 $\pm$10.4\\\hline
58 ymaravin 1.9 \WZ from MC &12.0&14.2& 13.6 &17.2\\
59 beaucero 1.2 \hline
60     \end{tabular}
61 ymaravin 1.9 \caption{Expected number of selected events for an integrated luminosity of 300 \invpb
62     for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Loose''
63 ymaravin 1.10 \W lepton. No requirement is applied on the transverse \W candidate mass.}
64 ymaravin 1.9 \label{tab:FinalNoMWtCutLoose}
65 beaucero 1.2 \end{center}
66     \end{table}
67 beaucero 1.4
68 beaucero 1.6 \begin{table}[h]
69     \begin{center}
70     \begin{tabular}{lcccc} \hline \hline
71     & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
72 beaucero 1.12 $N$ - ZZ -Z$\gamma$ & 31.8 $\pm$5.5 & 16.3$\pm$1.0 & 36.9$\pm$4.5 & 18.5$\pm$1.3\\ \hline
73 ymaravin 1.10 $N^{non genuine~Z}$ (Fit) & 3.8 $\pm$3.5 & 1.5$\pm$3.2 & 4.1$\pm$2.5 & 0.8$\pm$2.8\\ \hline
74 beaucero 1.12 $N^{genuine~Z}$ (matrix method) & 16.8 $\pm$5.7 & 7.4 $\pm$5.9 & 22.5 $\pm$7.1 & 8.2 $\pm$6.6\\ \hline
75     $N^{\WZ}$ & 11.2 $\pm$8.7 & 7.5 $\pm$6.8 & 10.3 $\pm$8.8 & 9.5 $\pm$7.3\\ \hline
76     \WZ from MC &11.6&12.3& 13.3 &14.9\\
77 beaucero 1.6 \hline
78     \end{tabular}
79 ymaravin 1.10 \caption{Expected number of data events for an integrated luminosity of 300 \invpb for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Tight'' \W lepton. No requirement is applied
80     on the transverse \W candidate mass.}
81 ymaravin 1.9 \label{tab:FinalNoMWtCut}
82 beaucero 1.6 \end{center}
83     \end{table}
84    
85 ymaravin 1.9 \subsubsection{Performance of the matrix method without background categorization}
86 ymaravin 1.10
87     The performance of the matrix method depends on the validity of the following three assumptions:
88     \begin{itemize}
89 vuko 1.11 \item the contribution from processes with two or more misidentified jets is negligible,
90 ymaravin 1.10 \item $p_{fake}$ should describe the probability of misidentified jets passing loose criteria to also
91     pass tight lepton requirements in the background to the signal,
92     \item the misidentified lepton is associated with the \W candidate decay.
93     \end{itemize}
94    
95     The first assumption is true for the \WZ analysis, and the second one is true if we assume
96 vuko 1.11 that the jet composition in the control sample used to establish $p_{fake}$ is the same as that
97 ymaravin 1.10 in the background in the \WZ data sample. This can be achieved by using $\W+X$
98     processes as a control sample, as described in Section~\ref{sec:WPFake}. The latter assumption
99     is generally not true for $t\bar{t}$ processes, and therefore, we subtract background
100     without genuine \Z bosons using the fit results of the \Z candidate invariant mass.
101    
102 vuko 1.11 However, after applying the full selection criteria, the contribution from the backgrounds
103     without real \Z boson is negligible, and the fit results in an unacceptable large uncertainty
104 ymaravin 1.10 for the 300 \invpb scenario. Thus, it is possible to neglect the combinatorial bias from $t\bar{t}$
105     processes with small integrated luminosity sample and forgo the fit altogether. In the following
106     we provide the results of estimation of the background without subtracting the estimated
107     non-genuine \Z boson background.
108    
109     The comparisons between predicted and true MC backgrounds are given in Tables~\ref{tab:FinalNoFitLoose}
110     and \ref{tab:FinalNoFit} for ``Loose'' and ``Tight'' \W lepton, respectively.
111 beaucero 1.4
112     \begin{table}[h]
113 beaucero 1.6 \begin{center}
114     \begin{tabular}{lcccc} \hline \hline
115 ymaravin 1.10 & 3e &2e1$\mu$ & 2$\mu$1e &3$\mu$\\ \hline
116 beaucero 1.12 $N$ - ZZ - Z$\gamma$ & 19.6$\pm$1.2 & 23.9$\pm$0.7 & 23.1$\pm$1.1 & 25.9$\pm$0.8\\ \hline
117     $N^{genuine~Z}$ (matrix method) & 10.0 $\pm$2.5 & 15.8 $\pm$1.2 & 16.0 $\pm$2.4 & 15.8 $\pm$1.4\\ \hline
118     $N^{WZ}$ & 9.6 $\pm$2.8 & 8.1 $\pm$1.3 & 7.1 $\pm$2.7 & 10.1 $\pm$1.6\\ \hline
119 ymaravin 1.9 \WZ from MC &8.1&9.0& 9.2 &11.3\\
120 beaucero 1.6 \hline
121     \end{tabular}
122 ymaravin 1.9 \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
123     and estimated background for 81 GeV $< M_Z < $ 101 GeV with ``Loose'' \W lepton criteria.}
124     \label{tab:FinalNoFitLoose}
125 beaucero 1.6 \end{center}
126     \end{table}
127    
128     \begin{table}[h]
129     \begin{center}
130     \begin{tabular}{lcccc} \hline \hline
131     & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
132 beaucero 1.12 $N$ - ZZ -Z$\gamma$ &12.1$\pm$1.1 &8.9$\pm$0.7 &12.8$\pm$1.0 &10.6$\pm$0.7\\ \hline
133     $N^{genuine~Z}$ (matrix method) &3.2 $\pm$1.7 &0.9 $\pm$1.0 &5.1 $\pm$2.1 &0.9 $\pm$1.1\\ \hline
134     $N^{\WZ}$ &8.9 $\pm$2.1 &8.0 $\pm$1.2 &7.7 $\pm$2.3 &9.9$\pm$1.3\\ \hline
135 ymaravin 1.9 \WZ from MC &7.9&8.1& 9.0 &10.1\\ \hline
136 beaucero 1.4 \end{tabular}
137 ymaravin 1.9 \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
138     and estimated background for 81 GeV $< M_Z < $ 101 GeV and ``Tight'' \W lepton requirement.}
139     \label{tab:FinalNoFit}
140 beaucero 1.4 \end{center}
141     \end{table}
142 ymaravin 1.10 The agreement between estimated and MC true backgrounds is excellent. Smaller systematic uncertainty
143     associated with the linear fit also results in a higher discovery potential, as described in the next Section.
144