ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex (file contents):
Revision 1.3 by beaucero, Sun Jul 27 17:20:33 2008 UTC vs.
Revision 1.11 by vuko, Thu Jul 31 14:03:15 2008 UTC

# Line 1 | Line 1
1 < \appendix
2 < \section{Additional Cross Check on Background Estimation Studies}
1 > \subsection{Further cross-checks}
2 > The test described in the previous Section illustrates the robustness of the
3 > matrix method to estimate the background correctly for a different
4 > jet flavor composition in the $\Z+jet$ sample.
5 >
6 > In the following we further scrutinize the details of the background estimation.
7 > We test the performance of the matrix method on a sample selected with the
8 > full selection criteria but the requirement on the \W candidate transverse mass.
9 > We also test a possibility of extracting the background without categorization
10 > of the instrumental background contributions into genuine/fake \Z bosons.
11 >
12 > \subsubsection{Background estimation without the \W boson transverse mass requirement}
13 > One of the ways to validate the matrix method is a comparison of its background
14 > prediction with the MC truth information at different stage of application of the
15 > \WZ signal selection criteria. We show that the matrix method works well with a very
16 > loose selection criteria (see the Section above). In the following we perform
17 > the comparison after applying the full selection criteria but the requirement on the
18 > \W candidate transverse mass.
19 >
20 > We repeat the procedure described in Section~\ref{sec:moreDetailsBackground} for
21 > every signature channels and provide the results of background estimation from processes
22 > without real \Z boson in Table~\ref{tab:FitNoMWt} and final results in
23 > Tables~\ref{tab:FinalNoMWtCutLoose} and \ref{tab:FinalNoMWtCut} for ``Loose''
24 > and ``Tight'' requirements on the \W lepton. The results agree with each other
25 > within one sigma of uncertainty.
26  
4 In figures~\ref{fig:AllFits}, the fit approximation of the invariant
5 mass of \Z boson candidate is shown for each channel and for loose and
6 tight criteria. The fit is performed using an addition of a
7 convolution of a Gaussian and Breit-Wigner function and a line in
8 order to fit the background.
9
10
11 \begin{figure}[hbt]
12  \begin{center}
13  \scalebox{0.3}{\includegraphics{figs/Fit3eLoose.eps}\includegraphics{figs/Fit3eTight.eps}}\\
14  \scalebox{0.3}{\includegraphics{figs/Fit2e1muLoose.eps}\includegraphics{figs/Fit2e1muTight.eps}}\\
15  \scalebox{0.3}{\includegraphics{figs/Fit2mu1eLoose.eps}\includegraphics{figs/Fit2mu1eTight.eps}}\\
16  \scalebox{0.3}{\includegraphics{figs/Fit3muLoose.eps}\includegraphics{figs/Fit3muTight.eps}}\\
17  \caption{Invariante mass of \Z boson candidate for the different samples studied on the left when the lepton pass the loose criteria, on the right when the lepton pass the tight criteria.}
18  \label{fig:AllFits}
19  \end{center}
20 \end{figure}
21
22
23 The linear fit will take into account the background with non-genuine
24 \Z candidate but it will also account for some part of \Z+jets and
25 $Zb\bar{b}$ background as the gamma$^*$ will populate the side band.
26 The comparison can be seen in table~\ref{tab:CompFit}.
27   \begin{table}[h]
28   \begin{center}
29   \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
30                      & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
31                      genuine \Z boson} \\
32   Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
33 < $3e$ Loose &2.8 & 2.9 & 0.8 & 0.1 & 0.9 & 1.0$ \pm $2.7 \\\hline
34 < $3e$ Tight &0.8 & 1.2 & 0.4 & 0.1 & 0.5 & 0.7$ \pm $2.5 \\\hline
35 < $2e1\mu$ Loose &1.3 & 4.7 & 4.5 & 0 & 4.5 & 4.2$ \pm $3.7 \\\hline
36 < $2e1\mu$ Tight &0.0 & 0.1 & 0.5 & 0 & 0.5 & 0.6$ \pm $2.5 \\\hline
37 < $2\mu1e$ Loose &4.1 & 2.9 & 0.5 & 0 & 0.5 & 0.9$ \pm $2.7 \\\hline
38 < $2\mu1e$ Tight &0.8 & 1.3 & 0.4 & 0 & 0.4 & 0.6$ \pm $2.4 \\\hline
39 < $3\mu$ Loose &1.9 & 4.2 & 4.1 & 0 & 4.1 & 2.3$ \pm $3.3 \\\hline
40 < $3\mu$ Tight &0.1 & 0.3 & 0.2 & 0 & 0.2 & 0.4$ \pm $2.4 \\\hline
33 > $3e$ Loose &44.6 & 12.7 & 1.6 & 0.4 & 2.0 & 6.6$\pm$4.2 \\\hline
34 > $3e$ Tight &13.9 & 5.0 & 0.8 & 0.4 & 1.2 & 3.8$\pm$3.5 \\\hline
35 > $2e1mu$ Loose &41.5 & 78.9 & 12.6 & 0 & 12.6 & 16.9$\pm$5.5 \\\hline
36 > $2e1mu$ Tight &1.0 & 2.0 & 0.9 & 0 & 0.9 & 1.5$\pm$3.2 \\\hline
37 > $2mu1e$ Loose &56.3 & 15.4 & 1.9 & 0 & 1.9 & 6.9$\pm$4.4 \\\hline
38 > $2mu1e$ Tight &17.3 & 5.6 & 0.8 & 0 & 0.8 & 4.1$\pm$2.5 \\\hline
39 > $3mu$ Loose &43.7 & 84.9 & 12.0 & 0 & 12.0 & 11.0$\pm$5.0 \\\hline
40 > $3mu$ Tight &0.8 & 2.3 & 0.3 & 0 & 0.3 & 0.8$\pm$2.8 \\\hline
41   \end{tabular}
42   \end{center}
43 < \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
44 < %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
45 < % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
46 < }
47 < \label{tab:CompFit}
43 > \caption{Comparison between Monte Carlo truth information and the results of the fit for the background
44 > without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The
45 > ``Loose'' and ``Tight'' selection criteria applied on the \W lepton. No requirement is applied on the transverse
46 > \W candidate mass.}
47 > \label{tab:FitNoMWt}
48   \end{table}
49  
50
51 Nevertheless in association with the matrix method the background is
52 well estimated as one can see in table~\ref{tab:FinalXC}.
53
50   \begin{table}[h]
51    \begin{center}
52   \begin{tabular}{lcccc} \hline \hline
53   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
54 < %$N_{Loose}$ - ZZ -Zgamma &19.7$\pm$1.1 &22.9$\pm$0.7 &22.9$\pm$1.1 &25.6$\pm$0.8 \\
55 < %$N_{Loose} ^{non genuine Z}$ (Fit) &1.0$\pm$1.5  &11.2$\pm$5.5 &3.1$\pm$2.4 &  4.8$\pm$3.7\\
56 < $N$ - ZZ -Zgamma &12.2$\pm$1.1 &8.7$\pm$0.6 &12.8$\pm$1.0 &11.1$\pm$0.7\\
57 < $N^{non genuine Z}$ (Fit)&0.7$\pm$2.5 &0.6$\pm$2.5 &0.6$\pm$2.4 &0.4$\pm$2.4\\
58 < $N^{genuine Z}$ (matrix method)& 3.2$\pm$1.8 &0.7$\pm$0.9 &4.6$\pm$2.1 &0.9$\pm$1.1\\\hline
63 < $N^{WZ}$ & 8.3$\pm$3.2 &7.4$\pm$2.8 &7.6$\pm$3.3 &9.8$\pm$2.7\\\hline
64 < \WZ from MC &7.9&8.0& 8.9 &10.1\\
65 <
54 > $N$ - ZZ -Z$\gamma$                     &75.3$\pm$7.3     &146.6$\pm$0.1     & 90.4$\pm$5.9    & 156.9$\pm$0.1\\ \hline
55 > $N^{non genuine~Z}$ (Fit)             &6.6$\pm$4.2       &16.9$\pm$5.5       & 6.9$\pm$ 4.4      & 11.0$\pm$5.0\\ \hline
56 > $N^{genuine~Z}$ (matrix method)&52.5 $\pm$17.6 &122.2 $\pm$8.6   & 68.7 $\pm$15.1  & 136.0 $\pm$ 8.5\\ \hline
57 > $N^{\WZ}$                                          &16.3$\pm$19.5  &7.5 $\pm$10.2      &14.8 $\pm$16.8  &  10.0 $\pm$9.8\\\hline
58 > \WZ from MC &12.0&14.2& 13.6 &17.2\\
59   \hline
60   \end{tabular}
61 <
62 < \caption{Expected number of selected events for an integrated luminosity of 300
63 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
64 < \label{tab:FinalXC}
61 > \caption{Expected number of selected events for an integrated luminosity of 300 \invpb
62 > for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Loose''
63 > \W lepton. No requirement is applied on the transverse \W candidate mass.}
64 > \label{tab:FinalNoMWtCutLoose}
65   \end{center}
66   \end{table}
67  
75
76
77
78 Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit):
68   \begin{table}[h]
69 < \begin{center}
70 < \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
71 <                    & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
72 <                    genuine \Z boson} \\
73 < Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
74 < $3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline
75 < $3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline
76 < $2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline
77 < $2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline
89 < $2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline
90 < $2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline
91 < $3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline
92 < $3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline
69 >  \begin{center}
70 > \begin{tabular}{lcccc} \hline \hline
71 > & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
72 > $N$ - ZZ -Z$\gamma$                     & 36.0 $\pm$7.1  & 15.2$\pm$0.1   & 40.2$\pm$5.7  & 18.0$\pm$0.1\\ \hline
73 > $N^{non genuine~Z}$ (Fit)               & 3.8  $\pm$3.5    & 1.5$\pm$3.2     & 4.1$\pm$2.5    & 0.8$\pm$2.8\\ \hline
74 > $N^{genuine~Z}$ (matrix method)  & 16.8 $\pm$6.1   &  7.3 $\pm$5.8  & 22.0 $\pm$7.4 & 8.2 $\pm$6.6\\ \hline
75 > $N^{\WZ}$                                            & 15.4 $\pm$10.0 &  7.1 $\pm$6.6 & 14.1 $\pm$9.7 & 9.1 $\pm$7.1\\ \hline
76 > \WZ from MC &11.6&12.3& 13.3 &14.9\\
77 > \hline
78   \end{tabular}
79 + \caption{Expected number of data events for an integrated luminosity of 300 \invpb for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Tight'' \W lepton. No requirement is applied
80 + on the transverse \W candidate mass.}
81 + \label{tab:FinalNoMWtCut}
82   \end{center}
95 \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
96 %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
97 % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
98 }
99 \label{tab:FitLoosy}
83   \end{table}
84  
85 < Check on Without MWtCut Samples~\ref{tab:FitNoMWt} (Linear Fit):
85 > \subsubsection{Performance of the matrix method without background categorization}
86 >
87 > The performance of the matrix method depends on the validity of the following three assumptions:
88 > \begin{itemize}
89 > \item the contribution from processes with two or more misidentified jets is negligible,
90 > \item $p_{fake}$ should describe the probability of misidentified jets passing loose criteria to also
91 > pass tight lepton requirements in the background to the signal,
92 > \item the misidentified lepton is associated with the \W candidate decay.
93 > \end{itemize}
94 >
95 > The first assumption is true for the \WZ analysis, and the second one is true if we assume
96 > that the jet composition in the control sample used to establish $p_{fake}$ is the same as that
97 > in the background in the \WZ data sample. This can be achieved by using $\W+X$
98 > processes as a control sample, as described in Section~\ref{sec:WPFake}. The latter assumption
99 > is generally not true for $t\bar{t}$ processes, and therefore, we subtract background
100 > without genuine \Z bosons using the fit results of the \Z candidate invariant mass.
101 >
102 > However, after applying the full selection criteria, the contribution from the backgrounds
103 > without real \Z boson is negligible, and the fit results in an unacceptable large uncertainty
104 > for the 300 \invpb scenario. Thus, it is possible to neglect the combinatorial bias from $t\bar{t}$
105 > processes with small integrated luminosity sample and forgo the fit altogether. In the following
106 > we provide the results of estimation of the background without subtracting the estimated
107 > non-genuine \Z boson background.
108 >
109 > The comparisons between predicted and true MC backgrounds are given in Tables~\ref{tab:FinalNoFitLoose}
110 > and \ref{tab:FinalNoFit} for ``Loose'' and ``Tight'' \W lepton, respectively.
111 >
112   \begin{table}[h]
113 < \begin{center}
114 < \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
115 <                    & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
116 <                    genuine \Z boson} \\
117 < Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
118 < $3e$ Loose &16.4 & 12.7 & 1.1 & 0.1 & 1.2 & 2.8$ \pm $3.4 \\\hline
119 < $3e$ Tight &4.9 & 5.0 & 0.5 & 0.1 & 0.7 & 1.7$ \pm $2.9 \\\hline
120 < $2e1\mu$ Loose &15.8 & 78.9 & 9.0 & 0 & 9.0 & 11.6$ \pm $4.9 \\\hline
112 < $2e1\mu$ Tight &0.3 & 2.0 & 0.7 & 0 & 0.7 & 1.0$ \pm $2.8 \\\hline
113 < $2\mu1e$ Loose &20.4 & 15.4 & 1.3 & 0 & 1.3 & 2.9$ \pm $3.5 \\\hline
114 < $2\mu1e$ Tight &5.8 & 5.6 & 0.5 & 0 & 0.5 & 1.7$ \pm $3.0 \\\hline
115 < $3\mu$ Loose &16.8 & 84.9 & 8.5 & 0 & 8.5 & 7.1$ \pm $4.4 \\\hline
116 < $3\mu$ Tight &0.3 & 2.3 & 0.2 & 0 & 0.2 & 0.7$ \pm $2.8 \\\hline
113 >  \begin{center}
114 > \begin{tabular}{lcccc} \hline \hline
115 >                                                        & 3e                       &2e1$\mu$          & 2$\mu$1e          &3$\mu$\\ \hline
116 > $N$ - ZZ - Z$\gamma$                       & 19.9$\pm$1.0   & 23.6$\pm$0.1  & 23.4$\pm$1.0   &  25.5$\pm$0.0\\ \hline
117 > $N^{genuine~Z}$ (matrix method)   & 10.0 $\pm$2.2  & 15.8 $\pm$0.7   & 14.5 $\pm$2.2  &  15.8 $\pm$0.7\\ \hline
118 > $N^{WZ}$                                              & 9.9 $\pm$2.4    &  7.8 $\pm$0.7  &   8.9 $\pm$2.4  &     9.8 $\pm$0.7\\ \hline
119 > \WZ from MC &8.1&9.0& 9.2 &11.3\\
120 > \hline
121   \end{tabular}
122 + \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
123 + and estimated background for 81 GeV $< M_Z < $ 101 GeV with ``Loose'' \W lepton criteria.}
124 + \label{tab:FinalNoFitLoose}
125   \end{center}
119 \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
120 %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
121 % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
122 }
123 \label{tab:FitNoMWt}
126   \end{table}
127  
126
127 In table~\ref{tab:FinalNoMWtCut}, the final results are presented if we remove the cut on the W transverse mass. Everthing is still in perfect agreement...
128
128   \begin{table}[h]
129    \begin{center}
130   \begin{tabular}{lcccc} \hline \hline
131   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
132 < %$N_{Loose}$ - ZZ -Zgamma &19.7$\pm$1.1 &22.9$\pm$0.7 &22.9$\pm$1.1 &25.6$\pm$0.8 \\
133 < %$N_{Loose} ^{non genuine Z}$ (Fit) &1.0$\pm$1.5  &11.2$\pm$5.5 &3.1$\pm$2.4 &  4.8$\pm$3.7\\
134 < $N$ - ZZ -Zgamma &21.9$\pm$5.4 &15.2$\pm$1.0 &24.9$\pm$4.4 &17.8$\pm$1.3\\
135 < $N^{non genuine Z}$ (Fit)&1.7$\pm$2.9 &1.0$\pm$2.8 &1.7$\pm$3.0 &0.7$\pm$2.8\\
137 < $N^{genuine Z}$ (matrix method)& 8.4$\pm$3.5 &5.7$\pm$4.7 &11.2$\pm$4.3 &6.4$\pm$5.3\\\hline
138 < $N^{WZ}$ & 11.8$\pm$7.0 &8.5$\pm$5.6 &12.0$\pm$6.8 &10.7$\pm$6.1\\\hline
139 < \WZ from MC &11.6&12.3& 13.1 &14.9\\
140 <
141 < \hline
132 > $N$ - ZZ -Z$\gamma$                     &12.4$\pm$1.0   &8.7$\pm$0.1            &13.1$\pm$0.9   &10.6$\pm$0.0\\ \hline
133 > $N^{genuine~Z}$ (matrix method) &3.2 $\pm$1.7           &0.9 $\pm$1.0   &4.6 $\pm$2.1   &0.9 $\pm$1.1\\ \hline
134 > $N^{\WZ}$                                       &9.2 $\pm$2.0           &7.7 $\pm$1.0           &8.5 $\pm$2.3   &9.6$\pm$1.1\\ \hline
135 > \WZ from MC &7.9&8.1& 9.0 &10.1\\ \hline
136   \end{tabular}
137 <
138 < \caption{Expected number of selected events for an integrated luminosity of 300
139 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
146 < \label{tab:FinalNoMWtCut}
137 > \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
138 > and estimated background for 81 GeV $< M_Z < $ 101 GeV and ``Tight'' \W lepton requirement.}
139 > \label{tab:FinalNoFit}
140   \end{center}
141   \end{table}
142 + The agreement between estimated and MC true backgrounds is excellent. Smaller systematic uncertainty
143 + associated with the linear fit also results in a higher discovery potential, as described in the next Section.
144 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines