1 |
+ |
\clearpage |
2 |
+ |
\newpage |
3 |
|
\appendix |
4 |
|
\section{Additional Cross Check on Background Estimation Studies} |
5 |
|
|
7 |
|
mass of \Z boson candidate is shown for each channel and for loose and |
8 |
|
tight criteria. The fit is performed using an addition of a |
9 |
|
convolution of a Gaussian and Breit-Wigner function and a line in |
10 |
< |
order to fit the background. |
10 |
> |
order to fit the background. It has to be noticed that due to a lack |
11 |
> |
of statistics in chowder soup, all bin with 0 events from chowder have |
12 |
> |
been modified in order to avoid to have an error at 0. The |
13 |
> |
corresponding error in the bin with no event correspond to the weight |
14 |
> |
of each process in Chowder soup. One can see that the errors are |
15 |
> |
large, and the fit is then not really constraint. |
16 |
|
|
17 |
|
|
18 |
|
\begin{figure}[hbt] |
48 |
|
\end{tabular} |
49 |
|
\end{center} |
50 |
|
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
44 |
– |
%I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE |
45 |
– |
% One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples. |
51 |
|
} |
52 |
|
\label{tab:CompFit} |
53 |
|
\end{table} |
54 |
|
|
55 |
|
|
56 |
|
Nevertheless in association with the matrix method the background is |
57 |
< |
well estimated as one can see in table~\ref{tab:FinalXC}. |
57 |
> |
well estimated as one can see in table~\ref{tab:FinalXC}.The corresponding figure can be |
58 |
> |
seen~\ref{fig:FinalMatrix3e}~\ref{fig:FinalMatrix2e1mu}~\ref{fig:FinalMatrix2mu1e}~\ref{fig:FinalMatrix3mu} |
59 |
> |
for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively. |
60 |
|
|
61 |
|
\begin{table}[h] |
62 |
|
\begin{center} |
79 |
|
\end{center} |
80 |
|
\end{table} |
81 |
|
|
82 |
+ |
\begin{figure}[hbt] |
83 |
+ |
\begin{center} |
84 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}} |
85 |
+ |
\caption{Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
86 |
+ |
\label{fig:FinalMatrix3e} |
87 |
+ |
\end{center} |
88 |
+ |
\end{figure} |
89 |
|
|
90 |
+ |
\begin{figure}[hbt] |
91 |
+ |
\begin{center} |
92 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}} |
93 |
+ |
\caption{Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
94 |
+ |
\label{fig:FinalMatrix2e1mu} |
95 |
+ |
\end{center} |
96 |
+ |
\end{figure} |
97 |
+ |
|
98 |
+ |
\begin{figure}[hbt] |
99 |
+ |
\begin{center} |
100 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}} |
101 |
+ |
\caption{Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
102 |
+ |
\label{fig:FinalMatrix2mu1e} |
103 |
+ |
\end{center} |
104 |
+ |
\end{figure} |
105 |
+ |
|
106 |
+ |
\begin{figure}[hbt] |
107 |
+ |
\begin{center} |
108 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}} |
109 |
+ |
\caption{Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
110 |
+ |
\label{fig:FinalMatrix3mu} |
111 |
+ |
\end{center} |
112 |
+ |
\end{figure} |
113 |
|
|
114 |
|
|
78 |
– |
Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit): |
79 |
– |
\begin{table}[h] |
80 |
– |
\begin{center} |
81 |
– |
\begin{tabular}{|l|c|c|c|c|c|c|c|} \hline |
82 |
– |
& \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without |
83 |
– |
genuine \Z boson} \\ |
84 |
– |
Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline |
85 |
– |
$3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline |
86 |
– |
$3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline |
87 |
– |
$2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline |
88 |
– |
$2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline |
89 |
– |
$2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline |
90 |
– |
$2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline |
91 |
– |
$3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline |
92 |
– |
$3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline |
93 |
– |
\end{tabular} |
94 |
– |
\end{center} |
95 |
– |
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
96 |
– |
%I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE |
97 |
– |
% One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples. |
98 |
– |
} |
99 |
– |
\label{tab:FitLoosy} |
100 |
– |
\end{table} |
115 |
|
|
116 |
|
Check on Without MWtCut Samples~\ref{tab:FitNoMWt} (Linear Fit): |
117 |
|
\begin{table}[h] |
138 |
|
\end{table} |
139 |
|
|
140 |
|
|
141 |
< |
In table~\ref{tab:FinalNoMWtCut}, the final results are presented if we remove the cut on the W transverse mass. Everthing is still in perfect agreement... |
141 |
> |
In table~\ref{tab:FinalNoMWtCut}, the final results are presented if |
142 |
> |
we remove the cut on the W transverse mass. Everthing is still in |
143 |
> |
perfect agreement... The corresponding figure can be |
144 |
> |
seen~\ref{fig:FinalMatrix3eNoWtCut}~\ref{fig:FinalMatrix2e1muNoWtCut}~\ref{fig:FinalMatrix2mu1eNoWtCut}~\ref{fig:FinalMatrix3muNoWtCut} |
145 |
> |
for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively. |
146 |
|
|
147 |
|
\begin{table}[h] |
148 |
|
\begin{center} |
164 |
|
\label{tab:FinalNoMWtCut} |
165 |
|
\end{center} |
166 |
|
\end{table} |
167 |
+ |
|
168 |
+ |
\begin{figure}[hbt] |
169 |
+ |
\begin{center} |
170 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}} |
171 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
172 |
+ |
\label{fig:FinalMatrix3eNoWtCut} |
173 |
+ |
\end{center} |
174 |
+ |
\end{figure} |
175 |
+ |
|
176 |
+ |
\begin{figure}[hbt] |
177 |
+ |
\begin{center} |
178 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassNoCutMWt.eps}} |
179 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
180 |
+ |
\label{fig:FinalMatrix2e1muNoWtCut} |
181 |
+ |
\end{center} |
182 |
+ |
\end{figure} |
183 |
+ |
|
184 |
+ |
\begin{figure}[hbt] |
185 |
+ |
\begin{center} |
186 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassNoCutMWt.eps}} |
187 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
188 |
+ |
\label{fig:FinalMatrix2mu1eNoWtCut} |
189 |
+ |
\end{center} |
190 |
+ |
\end{figure} |
191 |
+ |
|
192 |
+ |
\begin{figure}[hbt] |
193 |
+ |
\begin{center} |
194 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassNoCutMWt.eps}} |
195 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
196 |
+ |
\label{fig:FinalMatrix3muNoWtCut} |
197 |
+ |
\end{center} |
198 |
+ |
\end{figure} |
199 |
+ |
|
200 |
+ |
|
201 |
+ |
TO BE REMOVE??? ONLY USEFUL FOR MUONS PART??? |
202 |
+ |
Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit): |
203 |
+ |
\begin{table}[h] |
204 |
+ |
\begin{center} |
205 |
+ |
\begin{tabular}{|l|c|c|c|c|c|c|c|} \hline |
206 |
+ |
& \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without |
207 |
+ |
genuine \Z boson} \\ |
208 |
+ |
Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline |
209 |
+ |
$3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline |
210 |
+ |
$3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline |
211 |
+ |
$2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline |
212 |
+ |
$2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline |
213 |
+ |
$2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline |
214 |
+ |
$2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline |
215 |
+ |
$3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline |
216 |
+ |
$3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline |
217 |
+ |
\end{tabular} |
218 |
+ |
\end{center} |
219 |
+ |
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
220 |
+ |
%I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE |
221 |
+ |
% One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples. |
222 |
+ |
} |
223 |
+ |
\label{tab:FitLoosy} |
224 |
+ |
\end{table} |