ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex (file contents):
Revision 1.2 by beaucero, Sun Jul 27 16:59:57 2008 UTC vs.
Revision 1.5 by beaucero, Mon Jul 28 13:38:36 2008 UTC

# Line 1 | Line 1
1 + \clearpage
2 + \newpage
3   \appendix
4   \section{Additional Cross Check on Background Estimation Studies}
5  
# Line 5 | Line 7 | In figures~\ref{fig:AllFits}, the fit ap
7   mass of \Z boson candidate is shown for each channel and for loose and
8   tight criteria. The fit is performed using an addition of a
9   convolution of a Gaussian and Breit-Wigner function and a line in
10 < order to fit the background.
10 > order to fit the background. It has to be noticed that due to a lack
11 > of statistics in chowder soup, all bin with 0 events from chowder have
12 > been modified in order to avoid to have an error at 0. The
13 > corresponding error in the bin with no event correspond to the weight
14 > of each process in Chowder soup. One can see that the errors are
15 > large, and the fit is then not really constraint.
16  
17  
18   \begin{figure}[hbt]
# Line 30 | Line 37 | The comparison can be seen in table~\ref
37                      & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
38                      genuine \Z boson} \\
39   Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
40 < $3e$ Loose &2.8 & 2.9 & 0.8 & 0.1 & 0.9 & 1.0$ \pm $2.7 \\\hline
41 < $3e$ Tight &0.8 & 1.2 & 0.4 & 0.1 & 0.5 & 0.7$ \pm $2.5 \\\hline
42 < $2e1\mu$ Loose &1.3 & 4.7 & 4.5 & 0 & 4.5 & 4.2$ \pm $3.7 \\\hline
43 < $2e1\mu$ Tight &0.0 & 0.1 & 0.5 & 0 & 0.5 & 0.6$ \pm $2.5 \\\hline
44 < $2\mu1e$ Loose &4.1 & 2.9 & 0.5 & 0 & 0.5 & 0.9$ \pm $2.7 \\\hline
45 < $2\mu1e$ Tight &0.8 & 1.3 & 0.4 & 0 & 0.4 & 0.6$ \pm $2.4 \\\hline
46 < $3\mu$ Loose &1.9 & 4.2 & 4.1 & 0 & 4.1 & 2.3$ \pm $3.3 \\\hline
47 < $3\mu$ Tight &0.1 & 0.3 & 0.2 & 0 & 0.2 & 0.4$ \pm $2.4 \\\hline
40 > $3e$ Loose &7.08067 & 2.86817 & 1.12287 & 0.357018 & 1.47989 & 1.45557$ \pm $2.9589 \\\hline
41 > $3e$ Tight &1.95631 & 1.20063 & 0.623349 & 0.357018 & 0.980367 & 1.11349$ \pm $2.83365 \\\hline
42 > $2e1mu$ Loose &3.97174 & 4.73581 & 6.17639 & 0 & 6.17639 & 6.0224$ \pm $4.0679 \\\hline
43 > $2e1mu$ Tight &0 & 0.0889355 & 0.734362 & 0 & 0.734362 & 0.97086$ \pm $2.80976 \\\hline  
44 > $2mu1e$ Loose &10.1004 & 2.93487 & 0.79839 & 0 & 0.79839 & 1.55994$ \pm $3.1279 \\\hline
45 > $2mu1e$ Tight &1.81221 & 1.28956 & 0.648954 & 0 & 0.648954 & 0.979719$ \pm $2.67068 \\\hline
46 > $3mu$ Loose &4.54662 & 4.17997 & 5.87059 & 0 & 5.87059 & 3.07779$ \pm $3.50566 \\\hline
47 > $3mu$ Tight &0.144028 & 0.28904 & 0.324477 & 0 & 0.324477 & 0.470637$ \pm $2.46181 \\\hline
48   \end{tabular}
49   \end{center}
50   \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
44 %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
45 % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
51   }
52   \label{tab:CompFit}
53   \end{table}
54  
55  
56   Nevertheless in association with the matrix method the background is
57 < well estimated as one can see in table~\ref{tab:FinalXC}.
57 > well estimated as one can see in table~\ref{tab:FinalXC}.The corresponding figure can be
58 > seen~\ref{fig:FinalMatrix3e}~\ref{fig:FinalMatrix2e1mu}~\ref{fig:FinalMatrix2mu1e}~\ref{fig:FinalMatrix3mu}
59 > for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively.
60  
61   \begin{table}[h]
62    \begin{center}
63   \begin{tabular}{lcccc} \hline \hline
64   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
65 < %$N_{Loose}$ - ZZ -Zgamma &19.7$\pm$1.1 &22.9$\pm$0.7 &22.9$\pm$1.1 &25.6$\pm$0.8 \\
66 < %$N_{Loose} ^{non genuine Z}$ (Fit) &1.0$\pm$1.5  &11.2$\pm$5.5 &3.1$\pm$2.4 &  4.8$\pm$3.7\\
67 < $N$ - ZZ -Zgamma &12.2$\pm$1.1 &8.7$\pm$0.6 &12.8$\pm$1.0 &11.1$\pm$0.7\\
68 < $N^{non genuine Z}$ (Fit)&0.7$\pm$2.5 &0.6$\pm$2.5 &0.6$\pm$2.4 &0.4$\pm$2.4\\
69 < $N^{genuine Z}$ (matrix method)& 3.2$\pm$1.8 &0.7$\pm$0.9 &4.6$\pm$2.1 &0.9$\pm$1.1\\\hline
63 < $N^{WZ}$ & 8.3$\pm$3.2 &7.4$\pm$2.8 &7.6$\pm$3.3 &9.8$\pm$2.7\\\hline
64 < \WZ from MC &7.9&8.0& 8.9 &10.1\\
65 > $N$ - ZZ -Zgamma &12.4437$\pm$0.992046 &8.69811$\pm$0&13.1255$\pm$0.937399&10.5715$\pm$0\\ \hline
66 > $N^{non genuine Z}$ (Fit)&1.11349$\pm$2.83365&0.97086$\pm$2.80976&0.979719$\pm$2.67068&0.470637$\pm$2.46181\\ \hline
67 > $N^{genuine Z}$ (matrix method)&3.21939 $\pm$1.78953&0.948261 $\pm$1.05074&4.63515 $\pm$2.11436&0.945652 $\pm$1.13388\\ \hline
68 > $N^{WZ}$ & 8.23222 $\pm$3.53155&7.74985 $\pm$3.15299 &7.55297 $\pm$3.54442&9.62584 $\pm$2.75094\\ \hline
69 > \WZ from MC &7.9&8.1& 9.0 &10.1\\
70  
71   \hline
72   \end{tabular}
# Line 73 | Line 78 | $N^{WZ}$ & 8.3$\pm$3.2 &7.4$\pm$2.8 &7.6
78   \end{table}
79  
80  
76
77
78 Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit):
81   \begin{table}[h]
82 < \begin{center}
83 < \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
84 <                    & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
85 <                    genuine \Z boson} \\
86 < Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
87 < $3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline
88 < $3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline
89 < $2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline
90 < $2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline
91 < $2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline
90 < $2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline
91 < $3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline
92 < $3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline
82 >  \begin{center}
83 > \begin{tabular}{lcccc} \hline \hline
84 > & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
85 > $N$ - ZZ -Zgamma &19.9098$\pm$1.00886&23.5941$\pm$0.00420358&23.3592$\pm$0.95001&25.5227$\pm$0.00420358\\ \hline
86 > $N^{non genuine Z}$ (Fit)&1.45557$\pm$2.9589&6.0224$\pm$4.0679&1.55994$\pm$3.1279&3.07779$\pm$3.50566\\ \hline
87 > $N^{genuine Z}$ (matrix method)&10.0606 $\pm$6.75575&15.8043 $\pm$8.41727)&14.4848 $\pm$6.80421&15.7609 $\pm$5.70923\\ \hline
88 > $N^{WZ}$ & 8.84029 $\pm$7.51757&7.78552 $\pm$11.1206&7.92435 $\pm$7.64947&9.75762 $\pm$7.37277\\ \hline
89 > \WZ from MC &8.1&9.0& 9.2 &11.3\\
90 >
91 > \hline
92   \end{tabular}
93 +
94 + \caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300
95 + pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
96 + \label{tab:FinalXCLoose}
97   \end{center}
95 \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
96 %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
97 % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
98 }
99 \label{tab:FitLoosy}
98   \end{table}
99  
100 + \begin{figure}[hbt]
101 +  \begin{center}
102 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}}
103 +  \caption{Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
104 +  \label{fig:FinalMatrix3e}
105 +  \end{center}
106 + \end{figure}
107 +
108 + \begin{figure}[hbt]
109 +  \begin{center}
110 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}}
111 +  \caption{Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
112 +  \label{fig:FinalMatrix2e1mu}
113 +  \end{center}
114 + \end{figure}
115 +
116 + \begin{figure}[hbt]
117 +  \begin{center}
118 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}}
119 +  \caption{Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
120 +  \label{fig:FinalMatrix2mu1e}
121 +  \end{center}
122 + \end{figure}
123 +
124 + \begin{figure}[hbt]
125 +  \begin{center}
126 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}}
127 +  \caption{Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
128 +  \label{fig:FinalMatrix3mu}
129 +  \end{center}
130 + \end{figure}
131 +
132 +
133 +
134   Check on Without MWtCut Samples~\ref{tab:FitNoMWt} (Linear Fit):
135   \begin{table}[h]
136   \begin{center}
# Line 106 | Line 138 | Check on Without MWtCut Samples~\ref{tab
138                      & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
139                      genuine \Z boson} \\
140   Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
141 < $3e$ Loose &16.4 & 12.7 & 1.1 & 0.1 & 1.2 & 2.8$ \pm $3.4 \\\hline
142 < $3e$ Tight &4.9 & 5.0 & 0.5 & 0.1 & 0.7 & 1.7$ \pm $2.9 \\\hline
143 < $2e1\mu$ Loose &15.8 & 78.9 & 9.0 & 0 & 9.0 & 11.6$ \pm $4.9 \\\hline
144 < $2e1\mu$ Tight &0.3 & 2.0 & 0.7 & 0 & 0.7 & 1.0$ \pm $2.8 \\\hline
145 < $2\mu1e$ Loose &20.4 & 15.4 & 1.3 & 0 & 1.3 & 2.9$ \pm $3.5 \\\hline
146 < $2\mu1e$ Tight &5.8 & 5.6 & 0.5 & 0 & 0.5 & 1.7$ \pm $3.0 \\\hline
147 < $3\mu$ Loose &16.8 & 84.9 & 8.5 & 0 & 8.5 & 7.1$ \pm $4.4 \\\hline
148 < $3\mu$ Tight &0.3 & 2.3 & 0.2 & 0 & 0.2 & 0.7$ \pm $2.8 \\\hline
141 > $3e$ Loose &44.5748 & 12.6511 & 1.62239 & 0.357018 & 1.9794 & 6.81271$ \pm $5.60783 \\\hline
142 > $3e$ Tight &13.8877 & 5.04709 & 0.79839 & 0.357018 & 1.15541 & 3.76484$ \pm $7.74145 \\\hline
143 > $2e1mu$ Loose &41.5198 & 78.9304 & 12.6155 & 0 & 12.6155 & 16.1879$ \pm $5.12531 \\\hline
144 > $2e1mu$ Tight &0.993801 & 1.97881 & 0.883798 & 0 & 0.883798 & 1.63388$ \pm $2.94792 \\\hline
145 > $2mu1e$ Loose &56.2794 & 15.3858 & 1.89565 & 0 & 1.89565 & 7.24906$ \pm $5.77249 \\\hline
146 > $2mu1e$ Tight &17.2942 & 5.55847 & 0.79839 & 0 & 0.79839 & 4.53933$ \pm $7.00846 \\\hline
147 > $3mu$ Loose &43.6972 & 84.8891 & 11.9976 & 0 & 11.9976 & 11.1603$ \pm $3.36046 \\\hline
148 > $3mu$ Tight &0.806562 & 2.31232 & 0.324477 & 0 & 0.324477 & 0.836361$ \pm $2.47575 \\\hline
149   \end{tabular}
150   \end{center}
151   \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
# Line 124 | Line 156 | $3\mu$ Tight &0.3 & 2.3 & 0.2 & 0 & 0.2
156   \end{table}
157  
158  
159 < In table~\ref{tab:FinalNoMWtCut}, the final results are presented if we remove the cut on the W transverse mass. Everthing is still in perfect agreement...
159 > In table~\ref{tab:FinalNoMWtCut}, the final results are presented if
160 > we remove the cut on the W transverse mass. Everthing is still in
161 > perfect agreement... The corresponding figure can be
162 > seen~\ref{fig:FinalMatrix3eNoWtCut}~\ref{fig:FinalMatrix2e1muNoWtCut}~\ref{fig:FinalMatrix2mu1eNoWtCut}~\ref{fig:FinalMatrix3muNoWtCut}
163 > for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively.
164  
165   \begin{table}[h]
166    \begin{center}
# Line 132 | Line 168 | In table~\ref{tab:FinalNoMWtCut}, the fi
168   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
169   %$N_{Loose}$ - ZZ -Zgamma &19.7$\pm$1.1 &22.9$\pm$0.7 &22.9$\pm$1.1 &25.6$\pm$0.8 \\
170   %$N_{Loose} ^{non genuine Z}$ (Fit) &1.0$\pm$1.5  &11.2$\pm$5.5 &3.1$\pm$2.4 &  4.8$\pm$3.7\\
171 < $N$ - ZZ -Zgamma &12.2$\pm$1.1 &8.7$\pm$0.6 &12.8$\pm$1.0 &11.1$\pm$0.7\\
171 > $N$ - ZZ -Zgamma &21.9$\pm$5.4 &15.2$\pm$1.0 &24.9$\pm$4.4 &17.8$\pm$1.3\\
172   $N^{non genuine Z}$ (Fit)&1.7$\pm$2.9 &1.0$\pm$2.8 &1.7$\pm$3.0 &0.7$\pm$2.8\\
173 < $N^{genuine Z}$ (matrix method)& 3.2$\pm$1.8 &0.7$\pm$0.9 &4.6$\pm$2.1 &0.9$\pm$1.1\\\hline
174 < $N^{WZ}$ & 8.3$\pm$3.2 &7.4$\pm$2.8 &7.6$\pm$3.3 &9.8$\pm$2.7\\\hline
175 < \WZ from MC &7.9&8.0& 8.9 &10.1\\
173 > $N^{genuine Z}$ (matrix method)& 8.4$\pm$3.5 &5.7$\pm$4.7 &11.2$\pm$4.3 &6.4$\pm$5.3\\\hline
174 > $N^{WZ}$ & 11.8$\pm$7.0 &8.5$\pm$5.6 &12.0$\pm$6.8 &10.7$\pm$6.1\\\hline
175 > \WZ from MC &11.6&12.3& 13.1 &14.9\\
176  
177   \hline
178   \end{tabular}
179  
180   \caption{Expected number of selected events for an integrated luminosity of 300
181   pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
182 < \label{tab:FinalNoMWtCut}}
182 > \label{tab:FinalNoMWtCut}
183   \end{center}
184   \end{table}
185 +
186 + \begin{figure}[hbt]
187 +  \begin{center}
188 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}}
189 +  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
190 +  \label{fig:FinalMatrix3eNoWtCut}
191 +  \end{center}
192 + \end{figure}
193 +
194 + \begin{figure}[hbt]
195 +  \begin{center}
196 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassNoCutMWt.eps}}
197 +  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
198 +  \label{fig:FinalMatrix2e1muNoWtCut}
199 +  \end{center}
200 + \end{figure}
201 +
202 + \begin{figure}[hbt]
203 +  \begin{center}
204 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassNoCutMWt.eps}}
205 +  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
206 +  \label{fig:FinalMatrix2mu1eNoWtCut}
207 +  \end{center}
208 + \end{figure}
209 +
210 + \begin{figure}[hbt]
211 +  \begin{center}
212 +  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassNoCutMWt.eps}}
213 +  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
214 +  \label{fig:FinalMatrix3muNoWtCut}
215 +  \end{center}
216 + \end{figure}
217 +
218 +
219 + TO BE REMOVE??? ONLY USEFUL FOR MUONS PART???
220 + Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit):
221 + \begin{table}[h]
222 + \begin{center}
223 + \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
224 +                    & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
225 +                    genuine \Z boson} \\
226 + Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
227 + $3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline
228 + $3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline
229 + $2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline
230 + $2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline
231 + $2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline
232 + $2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline
233 + $3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline
234 + $3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline
235 + \end{tabular}
236 + \end{center}
237 + \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
238 + %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
239 + % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
240 + }
241 + \label{tab:FitLoosy}
242 + \end{table}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines