37 |
|
& \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without |
38 |
|
genuine \Z boson} \\ |
39 |
|
Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline |
40 |
< |
$3e$ Loose &7.08067 & 2.86817 & 1.12287 & 0.357018 & 1.47989 & 1.45557$ \pm $2.9589 \\\hline |
41 |
< |
$3e$ Tight &1.95631 & 1.20063 & 0.623349 & 0.357018 & 0.980367 & 1.11349$ \pm $2.83365 \\\hline |
42 |
< |
$2e1mu$ Loose &3.97174 & 4.73581 & 6.17639 & 0 & 6.17639 & 6.0224$ \pm $4.0679 \\\hline |
43 |
< |
$2e1mu$ Tight &0 & 0.0889355 & 0.734362 & 0 & 0.734362 & 0.97086$ \pm $2.80976 \\\hline |
44 |
< |
$2mu1e$ Loose &10.1004 & 2.93487 & 0.79839 & 0 & 0.79839 & 1.55994$ \pm $3.1279 \\\hline |
45 |
< |
$2mu1e$ Tight &1.81221 & 1.28956 & 0.648954 & 0 & 0.648954 & 0.979719$ \pm $2.67068 \\\hline |
46 |
< |
$3mu$ Loose &4.54662 & 4.17997 & 5.87059 & 0 & 5.87059 & 3.07779$ \pm $3.50566 \\\hline |
47 |
< |
$3mu$ Tight &0.144028 & 0.28904 & 0.324477 & 0 & 0.324477 & 0.470637$ \pm $2.46181 \\\hline |
40 |
> |
$3e$ Loose &7.1 & 2.9 & 1.1 & 0.4 & 1.5 & 1.5$ \pm $3.0 \\\hline |
41 |
> |
$3e$ Tight &2.0 & 1.2 & 0.6 & 0.4 & 1.0 & 1.1$ \pm $2.8 \\\hline |
42 |
> |
$2e1mu$ Loose &4.0 & 4.7 & 6.2 & 0.0 & 6.2 & 6.0$ \pm $4.1 \\\hline |
43 |
> |
$2e1mu$ Tight &0.0 & 0.1 & 0.7 & 0.0 & 0.7 & 1.0$ \pm $2.8 \\\hline |
44 |
> |
$2mu1e$ Loose &10.1 & 2.9 & 0.8 & 0.0 & 0.8 & 1.6$ \pm $3.1 \\\hline |
45 |
> |
$2mu1e$ Tight &1.8 & 1.3 & 0.6 & 0.0 & 0.6 & 1.0$ \pm $2.7 \\\hline |
46 |
> |
$3mu$ Loose &4.5 & 4.2 & 5.9 & 0.0 & 5.9 & 3.1$ \pm $3.5 \\\hline |
47 |
> |
$3mu$ Tight &0.1 & 0.3 & 0.3 & 0.0 & 0.3 & 0.5$ \pm $2.5 \\\hline |
48 |
|
\end{tabular} |
49 |
|
\end{center} |
50 |
|
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
62 |
|
\begin{center} |
63 |
|
\begin{tabular}{lcccc} \hline \hline |
64 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
65 |
< |
$N$ - ZZ -Zgamma &12.4437$\pm$0.992046 &8.69811$\pm$0&13.1255$\pm$0.937399&10.5715$\pm$0\\ \hline |
66 |
< |
$N^{non genuine Z}$ (Fit)&1.11349$\pm$2.83365&0.97086$\pm$2.80976&0.979719$\pm$2.67068&0.470637$\pm$2.46181\\ \hline |
67 |
< |
$N^{genuine Z}$ (matrix method)&3.21939 $\pm$1.78953&0.948261 $\pm$1.05074&4.63515 $\pm$2.11436&0.945652 $\pm$1.13388\\ \hline |
68 |
< |
$N^{WZ}$ & 8.23222 $\pm$3.53155&7.74985 $\pm$3.15299 &7.55297 $\pm$3.54442&9.62584 $\pm$2.75094\\ \hline |
65 |
> |
$N$ - ZZ -Zgamma &12.4$\pm$1.0 &8.7$\pm$0.0&13.1$\pm$0.9&10.6$\pm$0.0\\ \hline |
66 |
> |
$N^{non genuine Z}$ (Fit)&1.1$\pm$2.8&1.0$\pm$2.8&1.0$\pm$2.7&0.5$\pm$2.5\\ \hline |
67 |
> |
$N^{genuine Z}$ (matrix method)&3.2 $\pm$1.8&0.9 $\pm$1.1&4.6 $\pm$2.1&0.9 $\pm$1.1\\ \hline |
68 |
> |
$N^{WZ}$ & 8.2$\pm$3.5&7.7 $\pm$3.2 &7.6$\pm$3.5&9.6 $\pm$2.8\\ \hline |
69 |
|
\WZ from MC &7.9&8.1& 9.0 &10.1\\ |
70 |
|
|
71 |
|
\hline |
82 |
|
\begin{center} |
83 |
|
\begin{tabular}{lcccc} \hline \hline |
84 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
85 |
< |
$N$ - ZZ -Zgamma &19.9098$\pm$1.00886&23.5941$\pm$0.00420358&23.3592$\pm$0.95001&25.5227$\pm$0.00420358\\ \hline |
86 |
< |
$N^{non genuine Z}$ (Fit)&1.45557$\pm$2.9589&6.0224$\pm$4.0679&1.55994$\pm$3.1279&3.07779$\pm$3.50566\\ \hline |
87 |
< |
$N^{genuine Z}$ (matrix method)&10.0606 $\pm$6.75575&15.8043 $\pm$8.41727)&14.4848 $\pm$6.80421&15.7609 $\pm$5.70923\\ \hline |
88 |
< |
$N^{WZ}$ & 8.84029 $\pm$7.51757&7.78552 $\pm$11.1206&7.92435 $\pm$7.64947&9.75762 $\pm$7.37277\\ \hline |
85 |
> |
$N$ - ZZ -Zgamma &19.9$\pm$1.0&23.6$\pm$0.0&23.4$\pm$1.0&25.5$\pm$0.0\\ \hline |
86 |
> |
$N^{non genuine Z}$ (Fit)&1.5$\pm$3.0&6.0$\pm$4.1&1.6$\pm$3.1&3.1$\pm$3.5\\ \hline |
87 |
> |
$N^{genuine Z}$ (matrix method)&10.1 $\pm$6.8&15.8 $\pm$8.4&14.5 $\pm$6.8&15.8 $\pm$5.7\\ \hline |
88 |
> |
$N^{WZ}$ & 8.8$\pm$7.5&7.8$\pm$11.1&7.9$\pm$7.6&9.8 $\pm$7.4\\ \hline |
89 |
|
\WZ from MC &8.1&9.0& 9.2 &11.3\\ |
90 |
|
|
91 |
|
\hline |
138 |
|
& \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without |
139 |
|
genuine \Z boson} \\ |
140 |
|
Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline |
141 |
< |
$3e$ Loose &44.5748 & 12.6511 & 1.62239 & 0.357018 & 1.9794 & 6.81271$ \pm $5.60783 \\\hline |
142 |
< |
$3e$ Tight &13.8877 & 5.04709 & 0.79839 & 0.357018 & 1.15541 & 3.76484$ \pm $7.74145 \\\hline |
143 |
< |
$2e1mu$ Loose &41.5198 & 78.9304 & 12.6155 & 0 & 12.6155 & 16.1879$ \pm $5.12531 \\\hline |
144 |
< |
$2e1mu$ Tight &0.993801 & 1.97881 & 0.883798 & 0 & 0.883798 & 1.63388$ \pm $2.94792 \\\hline |
145 |
< |
$2mu1e$ Loose &56.2794 & 15.3858 & 1.89565 & 0 & 1.89565 & 7.24906$ \pm $5.77249 \\\hline |
146 |
< |
$2mu1e$ Tight &17.2942 & 5.55847 & 0.79839 & 0 & 0.79839 & 4.53933$ \pm $7.00846 \\\hline |
147 |
< |
$3mu$ Loose &43.6972 & 84.8891 & 11.9976 & 0 & 11.9976 & 11.1603$ \pm $3.36046 \\\hline |
148 |
< |
$3mu$ Tight &0.806562 & 2.31232 & 0.324477 & 0 & 0.324477 & 0.836361$ \pm $2.47575 \\\hline |
141 |
> |
$3e$ Loose &44.6 & 12.7 & 1.6 & 0.4 & 2.0 & 6.6$\pm$4.2 \\\hline |
142 |
> |
$3e$ Tight &13.9 & 5.0 & 0.8 & 0.4 & 1.2 & 3.8$\pm$3.5 \\\hline |
143 |
> |
$2e1mu$ Loose &41.5 & 78.9 & 12.6 & 0 & 12.6 & 16.9$\pm$5.5 \\\hline |
144 |
> |
$2e1mu$ Tight &1.0 & 2.0 & 0.9 & 0 & 0.9 & 1.5$\pm$3.2 \\\hline |
145 |
> |
$2mu1e$ Loose &56.3 & 15.4 & 1.9 & 0 & 1.9 & 6.9$\pm$4.4 \\\hline |
146 |
> |
$2mu1e$ Tight &17.3 & 5.6 & 0.8 & 0 & 0.8 & 4.1$\pm$2.5 \\\hline |
147 |
> |
$3mu$ Loose &43.7 & 84.9 & 12.0 & 0 & 12.0 & 11.0$\pm$5.0 \\\hline |
148 |
> |
$3mu$ Tight &0.8 & 2.3 & 0.3 & 0 & 0.3 & 0.8$\pm$2.8 \\\hline |
149 |
|
\end{tabular} |
150 |
|
\end{center} |
151 |
|
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
166 |
|
\begin{center} |
167 |
|
\begin{tabular}{lcccc} \hline \hline |
168 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
169 |
< |
%$N_{Loose}$ - ZZ -Zgamma &19.7$\pm$1.1 &22.9$\pm$0.7 &22.9$\pm$1.1 &25.6$\pm$0.8 \\ |
170 |
< |
%$N_{Loose} ^{non genuine Z}$ (Fit) &1.0$\pm$1.5 &11.2$\pm$5.5 &3.1$\pm$2.4 & 4.8$\pm$3.7\\ |
171 |
< |
$N$ - ZZ -Zgamma &21.9$\pm$5.4 &15.2$\pm$1.0 &24.9$\pm$4.4 &17.8$\pm$1.3\\ |
172 |
< |
$N^{non genuine Z}$ (Fit)&1.7$\pm$2.9 &1.0$\pm$2.8 &1.7$\pm$3.0 &0.7$\pm$2.8\\ |
173 |
< |
$N^{genuine Z}$ (matrix method)& 8.4$\pm$3.5 &5.7$\pm$4.7 &11.2$\pm$4.3 &6.4$\pm$5.3\\\hline |
174 |
< |
$N^{WZ}$ & 11.8$\pm$7.0 &8.5$\pm$5.6 &12.0$\pm$6.8 &10.7$\pm$6.1\\\hline |
175 |
< |
\WZ from MC &11.6&12.3& 13.1 &14.9\\ |
169 |
> |
$N$ - ZZ -Zgamma &35.9505$\pm$7.12087&15.9252$\pm$0.00840717&40.1673$\pm$5.70847&17.967$\pm$0.00420358\\ \hline |
170 |
> |
$N^{non genuine Z}$ (Fit)&3.76001$\pm$3.52367&1.45461$\pm$3.15729&4.10686$\pm$2.52845&0.750563$\pm$2.77128\\ \hline |
171 |
> |
$N^{genuine Z}$ (matrix method)&18.7345 $\pm$6.09299&8.35304 $\pm$6.61818&23.4279 $\pm$7.47204& 8.86174 $\pm$7.06819\\ \hline |
172 |
> |
$N^{WZ}$ &10.0951 $\pm$7.97988&7.56371 $\pm$7.47561&11.031 $\pm$8.8933& 9.10106 $\pm$7.62906\\ \hline |
173 |
> |
\WZ from MC &11.6&12.3& 13.3 &14.9\\ |
174 |
|
|
175 |
|
\hline |
176 |
|
\end{tabular} |
181 |
|
\end{center} |
182 |
|
\end{table} |
183 |
|
|
184 |
+ |
\begin{table}[h] |
185 |
+ |
\begin{center} |
186 |
+ |
\begin{tabular}{lcccc} \hline \hline |
187 |
+ |
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
188 |
+ |
$N$ - ZZ -Zgamma &75.3302$\pm$7.2764&146.642$\pm$0.0336287&90.4007$\pm$5.87661&156.943$\pm$0.0252215\\ \hline |
189 |
+ |
$N^{non genuine Z}$ (Fit)&6.58354$\pm$4.18822&16.9415$\pm$5.45238&6.90489$\pm$4.44438&10.9672$\pm$4.95535\\ \hline |
190 |
+ |
$N^{genuine Z}$ (matrix method)&58.5455 $\pm$14.4155&139.217 $\pm$20.2565&73.2121 $\pm$14.8922& 147.696 $\pm$14.674\\ \hline |
191 |
+ |
$N^{WZ}$ &9.50837 $\pm$16.3918&7.39079 $\pm$26.9642&11.312 $\pm$17.0061& 9.22217 $\pm$18.977\\\hline |
192 |
+ |
\WZ from MC &12.0&14.2& 13.6 &17.2\\ |
193 |
+ |
|
194 |
+ |
\hline |
195 |
+ |
\end{tabular} |
196 |
+ |
|
197 |
+ |
\caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300 |
198 |
+ |
pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.} |
199 |
+ |
\label{tab:FinalNoMWtCutLoose} |
200 |
+ |
\end{center} |
201 |
+ |
\end{table} |
202 |
+ |
|
203 |
|
\begin{figure}[hbt] |
204 |
|
\begin{center} |
205 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}} |
233 |
|
\end{figure} |
234 |
|
|
235 |
|
|
236 |
< |
TO BE REMOVE??? ONLY USEFUL FOR MUONS PART??? |
220 |
< |
Check on Loosy Samples~\ref{tab:FitLoosy} (Linear Fit): |
236 |
> |
WIHTOUT FITTING: |
237 |
|
\begin{table}[h] |
238 |
< |
\begin{center} |
239 |
< |
\begin{tabular}{|l|c|c|c|c|c|c|c|} \hline |
240 |
< |
& \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without |
241 |
< |
genuine \Z boson} \\ |
242 |
< |
Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline |
243 |
< |
$3e$ Loose &17.4 & 14.1 & 1.2 & 0.1 & 1.3 & 4.0$ \pm $3.6 \\\hline |
244 |
< |
$3e$ Tight &5.3 & 5.8 & 0.7 & 0.1 & 0.8 & 2.7$ \pm $3.2 \\\hline |
245 |
< |
$2e1\mu$ Loose &16.5 & 83.1 & 10.0 & 0 & 10.0 & 13.1$ \pm $5.0 \\\hline |
246 |
< |
$2e1\mu$ Tight &0.3 & 2.0 & 1.0 & 0 & 1.0 & 1.3$ \pm $3.0 \\\hline |
231 |
< |
$2\mu1e$ Loose &27.5 & 20.1 & 15.0 & 0.2 & 15.3 & 23.7$ \pm $5.5 \\ \hline |
232 |
< |
$2\mu1e$ Tight &7.7 & 6.9 & 13.2 & 0.1 & 13.3 & 19.7$ \pm $5.2 \\ \hline |
233 |
< |
$3\mu$ Loose &33.4 & 138.2 & 45.8 & 0.7 & 46.4 & 48.7$ \pm $6.7 \\\hline |
234 |
< |
$3\mu$ Tight &8.9 & 25.2 & 19.7 & 0.2 & 19.9 & 23.5$ \pm $5.5 \\\hline |
238 |
> |
\begin{center} |
239 |
> |
\begin{tabular}{lcccc} \hline \hline |
240 |
> |
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
241 |
> |
$N$ - ZZ -Zgamma &12.4437$\pm$0.992046 &8.69811$\pm$0&13.1255$\pm$0.937399&10.5715$\pm$0\\ \hline |
242 |
> |
$N^{genuine Z}$ (matrix method)&3.21939 $\pm$1.56769&15.8043 $\pm$0.691583&4.63515 $\pm$1.91862&0.945652 $\pm$1.12544\\ \hline |
243 |
> |
$N^{WZ}$ &8.23222 $\pm$1.56769&7.78552 $\pm$0.691583&7.55297 $\pm$1.91862&9.62584 $\pm$1.12544\\ \hline |
244 |
> |
\WZ from MC &7.9&8.1& 9.0 &10.1\\ |
245 |
> |
|
246 |
> |
\hline |
247 |
|
\end{tabular} |
248 |
+ |
|
249 |
+ |
\caption{Expected number of selected events for an integrated luminosity of 300 |
250 |
+ |
pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.} |
251 |
+ |
\label{tab:FinalNoFit} |
252 |
+ |
\end{center} |
253 |
+ |
\end{table} |
254 |
+ |
|
255 |
+ |
\begin{table}[h] |
256 |
+ |
\begin{center} |
257 |
+ |
\begin{tabular}{lcccc} \hline \hline |
258 |
+ |
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
259 |
+ |
$N$ - ZZ -Zgamma &19.9098$\pm$1.00886&23.5941$\pm$0.00420358&23.3592$\pm$0.95001&25.5227$\pm$0.00420358\\ \hline |
260 |
+ |
$N^{genuine Z}$ (matrix method)&10.0606 $\pm$0.621487&0.948261 $\pm$1.03651&14.4848 $\pm$0.885223&15.7609 $\pm$0.692575\\ \hline |
261 |
+ |
$N^{WZ}$ &8.84029 $\pm$0.62148&7.74985 $\pm$1.03651&7.92435 $\pm$0.885223&9.75762 $\pm$0.692575\\ \hline |
262 |
+ |
\WZ from MC &8.1&9.0& 9.2 &11.3\\ |
263 |
+ |
|
264 |
+ |
\hline |
265 |
+ |
\end{tabular} |
266 |
+ |
|
267 |
+ |
\caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300 |
268 |
+ |
pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.} |
269 |
+ |
\label{tab:FinalNoFitLoose} |
270 |
|
\end{center} |
237 |
– |
\caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered. |
238 |
– |
%I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE |
239 |
– |
% One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples. |
240 |
– |
} |
241 |
– |
\label{tab:FitLoosy} |
271 |
|
\end{table} |