166 |
|
\begin{center} |
167 |
|
\begin{tabular}{lcccc} \hline \hline |
168 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
169 |
< |
$N$ - ZZ -Zgamma &35.9505$\pm$7.12087&15.9252$\pm$0.00840717&40.1673$\pm$5.70847&17.967$\pm$0.00420358\\ \hline |
170 |
< |
$N^{non genuine Z}$ (Fit)&3.76001$\pm$3.52367&1.45461$\pm$3.15729&4.10686$\pm$2.52845&0.750563$\pm$2.77128\\ \hline |
171 |
< |
$N^{genuine Z}$ (matrix method)&18.7345 $\pm$6.09299&8.35304 $\pm$6.61818&23.4279 $\pm$7.47204& 8.86174 $\pm$7.06819\\ \hline |
172 |
< |
$N^{WZ}$ &10.0951 $\pm$7.97988&7.56371 $\pm$7.47561&11.031 $\pm$8.8933& 9.10106 $\pm$7.62906\\ \hline |
169 |
> |
$N$ - ZZ -Zgamma &36.0$\pm$7.1&15.9$\pm$0.0&40.2$\pm$5.7&18.0$\pm$0.0\\ \hline |
170 |
> |
$N^{non genuine Z}$ (Fit)&3.8$\pm$3.5&1.5$\pm$3.2&4.1$\pm$2.5&0.8$\pm$2.8\\ \hline |
171 |
> |
$N^{genuine Z}$ (matrix method)&18.7 $\pm$6.1&8.4 $\pm$6.6&23.4 $\pm$7.5& 8.9 $\pm$7.1\\ \hline |
172 |
> |
$N^{WZ}$ &10.1 $\pm$8.0&7.6 $\pm$7.5&11.0 $\pm$8.9& 9.1 $\pm$7.6\\ \hline |
173 |
|
\WZ from MC &11.6&12.3& 13.3 &14.9\\ |
174 |
|
|
175 |
|
\hline |
185 |
|
\begin{center} |
186 |
|
\begin{tabular}{lcccc} \hline \hline |
187 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
188 |
< |
$N$ - ZZ -Zgamma &75.3302$\pm$7.2764&146.642$\pm$0.0336287&90.4007$\pm$5.87661&156.943$\pm$0.0252215\\ \hline |
189 |
< |
$N^{non genuine Z}$ (Fit)&6.58354$\pm$4.18822&16.9415$\pm$5.45238&6.90489$\pm$4.44438&10.9672$\pm$4.95535\\ \hline |
190 |
< |
$N^{genuine Z}$ (matrix method)&58.5455 $\pm$14.4155&139.217 $\pm$20.2565&73.2121 $\pm$14.8922& 147.696 $\pm$14.674\\ \hline |
191 |
< |
$N^{WZ}$ &9.50837 $\pm$16.3918&7.39079 $\pm$26.9642&11.312 $\pm$17.0061& 9.22217 $\pm$18.977\\\hline |
188 |
> |
$N$ - ZZ -Zgamma &75.3$\pm$7.3&146.6$\pm$0.0&90.4$\pm$5.9&156.9$\pm$0.0\\ \hline |
189 |
> |
$N^{non genuine Z}$ (Fit)&6.6$\pm$4.2&16.9$\pm$5.5&6.9$\pm$4.4&11.0$\pm$5.0\\ \hline |
190 |
> |
$N^{genuine Z}$ (matrix method)&58.5 $\pm$14.4&139.2 $\pm$20.3&73.2 $\pm$14.9& 147.7 $\pm$14.7\\ \hline |
191 |
> |
$N^{WZ}$ &9.5$\pm$16.4&7.4 $\pm$27.0&11.3 $\pm$17.0& 9.2 $\pm$19.0\\\hline |
192 |
|
\WZ from MC &12.0&14.2& 13.6 &17.2\\ |
193 |
|
|
194 |
|
\hline |
202 |
|
|
203 |
|
\begin{figure}[hbt] |
204 |
|
\begin{center} |
205 |
< |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}} |
205 |
> |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCutNoFit.eps}} |
206 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
207 |
|
\label{fig:FinalMatrix3eNoWtCut} |
208 |
|
\end{center} |
210 |
|
|
211 |
|
\begin{figure}[hbt] |
212 |
|
\begin{center} |
213 |
< |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassNoCutMWt.eps}} |
213 |
> |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCutNoFit.eps}} |
214 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
215 |
|
\label{fig:FinalMatrix2e1muNoWtCut} |
216 |
|
\end{center} |
218 |
|
|
219 |
|
\begin{figure}[hbt] |
220 |
|
\begin{center} |
221 |
< |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassNoCutMWt.eps}} |
221 |
> |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCutNoFit.eps}} |
222 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
223 |
|
\label{fig:FinalMatrix2mu1eNoWtCut} |
224 |
|
\end{center} |
238 |
|
\begin{center} |
239 |
|
\begin{tabular}{lcccc} \hline \hline |
240 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
241 |
< |
$N$ - ZZ -Zgamma &12.4437$\pm$0.992046 &8.69811$\pm$0&13.1255$\pm$0.937399&10.5715$\pm$0\\ \hline |
242 |
< |
$N^{genuine Z}$ (matrix method)&3.21939 $\pm$1.56769&15.8043 $\pm$0.691583&4.63515 $\pm$1.91862&0.945652 $\pm$1.12544\\ \hline |
243 |
< |
$N^{WZ}$ &8.23222 $\pm$1.56769&7.78552 $\pm$0.691583&7.55297 $\pm$1.91862&9.62584 $\pm$1.12544\\ \hline |
241 |
> |
$N$ - ZZ -Zgamma &12.4$\pm$1.0 &8.7$\pm$0&13.1$\pm$0.9&10.6$\pm$0.0\\ \hline |
242 |
> |
$N^{genuine Z}$ (matrix method)&3.2 $\pm$1.6&15.8 $\pm$0.7&4.6 $\pm$1.9&0.9 $\pm$1.1\\ \hline |
243 |
> |
$N^{WZ}$ &8.2 $\pm$1.6&7.8 $\pm$0.7&7.6 $\pm$1.9&9.6$\pm$1.1\\ \hline |
244 |
|
\WZ from MC &7.9&8.1& 9.0 &10.1\\ |
245 |
|
|
246 |
|
\hline |
256 |
|
\begin{center} |
257 |
|
\begin{tabular}{lcccc} \hline \hline |
258 |
|
& 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline |
259 |
< |
$N$ - ZZ -Zgamma &19.9098$\pm$1.00886&23.5941$\pm$0.00420358&23.3592$\pm$0.95001&25.5227$\pm$0.00420358\\ \hline |
260 |
< |
$N^{genuine Z}$ (matrix method)&10.0606 $\pm$0.621487&0.948261 $\pm$1.03651&14.4848 $\pm$0.885223&15.7609 $\pm$0.692575\\ \hline |
261 |
< |
$N^{WZ}$ &8.84029 $\pm$0.62148&7.74985 $\pm$1.03651&7.92435 $\pm$0.885223&9.75762 $\pm$0.692575\\ \hline |
259 |
> |
$N$ - ZZ -Zgamma &19.9$\pm$1.0&23.6$\pm$0.0&23.4$\pm$1.0&25.5$\pm$0.0\\ \hline |
260 |
> |
$N^{genuine Z}$ (matrix method)&10.1 $\pm$0.6&0.9 $\pm$1.0&14.5 $\pm$0.9&15.8 $\pm$0.7\\ \hline |
261 |
> |
$N^{WZ}$ &8.8 $\pm$0.6&7.7 $\pm$1.0&7.9 $\pm$0.9&9.8 $\pm$0.7\\ \hline |
262 |
|
\WZ from MC &8.1&9.0& 9.2 &11.3\\ |
263 |
|
|
264 |
|
\hline |
269 |
|
\label{tab:FinalNoFitLoose} |
270 |
|
\end{center} |
271 |
|
\end{table} |
272 |
+ |
\clearpage |
273 |
+ |
|
274 |
+ |
\begin{figure}[hbt] |
275 |
+ |
\begin{center} |
276 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCutNoFit.eps}} |
277 |
+ |
\caption{No fit line: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
278 |
+ |
\label{fig:FinalMatrix3eNoFit} |
279 |
+ |
\end{center} |
280 |
+ |
\end{figure} |
281 |
+ |
|
282 |
+ |
\begin{figure}[hbt] |
283 |
+ |
\begin{center} |
284 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCutNoFit.eps}} |
285 |
+ |
\caption{No fit line: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
286 |
+ |
\label{fig:FinalMatrix2e1muNoFit} |
287 |
+ |
\end{center} |
288 |
+ |
\end{figure} |
289 |
+ |
|
290 |
+ |
\begin{figure}[hbt] |
291 |
+ |
\begin{center} |
292 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCutNoFit.eps}} |
293 |
+ |
\caption{No fit line: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
294 |
+ |
\label{fig:FinalMatrix2mu1eNoFit} |
295 |
+ |
\end{center} |
296 |
+ |
\end{figure} |
297 |
+ |
|
298 |
+ |
\begin{figure}[hbt] |
299 |
+ |
\begin{center} |
300 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCutNoFit.eps}} |
301 |
+ |
\caption{No fit line: Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
302 |
+ |
\label{fig:FinalMatrix3muNoFit} |
303 |
+ |
\end{center} |
304 |
+ |
\end{figure} |