3 |
|
\appendix |
4 |
|
\section{Additional Cross Check on Background Estimation Studies} |
5 |
|
|
6 |
< |
In figures~\ref{fig:AllFits}, the fit approximation of the invariant |
6 |
> |
In Figure~\ref{fig:AllFits}, the fit approximation of the invariant |
7 |
|
mass of \Z boson candidate is shown for each channel and for loose and |
8 |
|
tight criteria. The fit is performed using an addition of a |
9 |
|
convolution of a Gaussian and Breit-Wigner function and a line in |
10 |
|
order to fit the background. It has to be noticed that due to a lack |
11 |
< |
of statistics in chowder soup, all bin with 0 events from chowder have |
11 |
> |
of statistics in chowder soup, all bins with 0 events from chowder have |
12 |
|
been modified in order to avoid to have an error at 0. The |
13 |
|
corresponding error in the bin with no event correspond to the weight |
14 |
|
of each process in Chowder soup. One can see that the errors are |
15 |
< |
large, and the fit is then not really constraint. |
15 |
> |
large, and the fit is then not really constrained. |
16 |
|
|
17 |
|
|
18 |
|
\begin{figure}[hbt] |
21 |
|
\scalebox{0.3}{\includegraphics{figs/Fit2e1muLoose.eps}\includegraphics{figs/Fit2e1muTight.eps}}\\ |
22 |
|
\scalebox{0.3}{\includegraphics{figs/Fit2mu1eLoose.eps}\includegraphics{figs/Fit2mu1eTight.eps}}\\ |
23 |
|
\scalebox{0.3}{\includegraphics{figs/Fit3muLoose.eps}\includegraphics{figs/Fit3muTight.eps}}\\ |
24 |
< |
\caption{Invariante mass of \Z boson candidate for the different samples studied on the left when the lepton pass the loose criteria, on the right when the lepton pass the tight criteria.} |
24 |
> |
\caption{Invariant mass of \Z boson candidate for the different samples studied on the left when the lepton pass the loose criteria, on the right when the lepton pass the tight criteria.} |
25 |
|
\label{fig:AllFits} |
26 |
|
\end{center} |
27 |
|
\end{figure} |
54 |
|
|
55 |
|
|
56 |
|
Nevertheless in association with the matrix method the background is |
57 |
< |
well estimated as one can see in table~\ref{tab:FinalXC}.The corresponding figure can be |
58 |
< |
seen~\ref{fig:FinalMatrix3e}~\ref{fig:FinalMatrix2e1mu}~\ref{fig:FinalMatrix2mu1e}~\ref{fig:FinalMatrix3mu} |
57 |
> |
well estimated as one can see in table~\ref{tab:FinalXC}.The corresponding figures can be |
58 |
> |
seen in Figures~\ref{fig:FinalMatrix3e}, \ref{fig:FinalMatrix2e1mu}, \ref{fig:FinalMatrix2mu1e} and \ref{fig:FinalMatrix3mu} |
59 |
|
for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively. |
60 |
|
|
61 |
|
\begin{table}[h] |
100 |
|
\begin{figure}[hbt] |
101 |
|
\begin{center} |
102 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}} |
103 |
< |
\caption{Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
103 |
> |
\caption{Result of Matrix Method application for $3e$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
104 |
|
\label{fig:FinalMatrix3e} |
105 |
|
\end{center} |
106 |
|
\end{figure} |
108 |
|
\begin{figure}[hbt] |
109 |
|
\begin{center} |
110 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}} |
111 |
< |
\caption{Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
111 |
> |
\caption{Result of Matrix Method application for $2e1\mu$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
112 |
|
\label{fig:FinalMatrix2e1mu} |
113 |
|
\end{center} |
114 |
|
\end{figure} |
116 |
|
\begin{figure}[hbt] |
117 |
|
\begin{center} |
118 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}} |
119 |
< |
\caption{Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
119 |
> |
\caption{Result of Matrix Method application for $2\mu1e$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
120 |
|
\label{fig:FinalMatrix2mu1e} |
121 |
|
\end{center} |
122 |
|
\end{figure} |
124 |
|
\begin{figure}[hbt] |
125 |
|
\begin{center} |
126 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}} |
127 |
< |
\caption{Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
127 |
> |
\caption{Result of Matrix Method application for $3\mu$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
128 |
|
\label{fig:FinalMatrix3mu} |
129 |
|
\end{center} |
130 |
|
\end{figure} |
158 |
|
|
159 |
|
In table~\ref{tab:FinalNoMWtCut}, the final results are presented if |
160 |
|
we remove the cut on the W transverse mass. Everthing is still in |
161 |
< |
perfect agreement... The corresponding figure can be |
162 |
< |
seen~\ref{fig:FinalMatrix3eNoWtCut}~\ref{fig:FinalMatrix2e1muNoWtCut}~\ref{fig:FinalMatrix2mu1eNoWtCut}~\ref{fig:FinalMatrix3muNoWtCut} |
161 |
> |
perfect agreement... The corresponding figures can be |
162 |
> |
seen in Figures~\ref{fig:FinalMatrix3eNoWtCut}, \ref{fig:FinalMatrix2e1muNoWtCut}, |
163 |
> |
\ref{fig:FinalMatrix2mu1eNoWtCut} and \ref{fig:FinalMatrix3muNoWtCut} |
164 |
|
for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively. |
165 |
|
|
166 |
|
\begin{table}[h] |
203 |
|
|
204 |
|
\begin{figure}[hbt] |
205 |
|
\begin{center} |
206 |
+ |
<<<<<<< AppendixFitTest.tex |
207 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}} |
208 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
209 |
+ |
======= |
210 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCutNoFit.eps}} |
211 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
212 |
+ |
>>>>>>> 1.7 |
213 |
|
\label{fig:FinalMatrix3eNoWtCut} |
214 |
|
\end{center} |
215 |
|
\end{figure} |
216 |
|
|
217 |
|
\begin{figure}[hbt] |
218 |
|
\begin{center} |
219 |
+ |
<<<<<<< AppendixFitTest.tex |
220 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassNoCutMWt.eps}} |
221 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
222 |
+ |
======= |
223 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCutNoFit.eps}} |
224 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
225 |
+ |
>>>>>>> 1.7 |
226 |
|
\label{fig:FinalMatrix2e1muNoWtCut} |
227 |
|
\end{center} |
228 |
|
\end{figure} |
229 |
|
|
230 |
|
\begin{figure}[hbt] |
231 |
|
\begin{center} |
232 |
+ |
<<<<<<< AppendixFitTest.tex |
233 |
+ |
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassNoCutMWt.eps}} |
234 |
+ |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
235 |
+ |
======= |
236 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCutNoFit.eps}} |
237 |
|
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
238 |
+ |
>>>>>>> 1.7 |
239 |
|
\label{fig:FinalMatrix2mu1eNoWtCut} |
240 |
|
\end{center} |
241 |
|
\end{figure} |
243 |
|
\begin{figure}[hbt] |
244 |
|
\begin{center} |
245 |
|
\scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassNoCutMWt.eps}} |
246 |
< |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
246 |
> |
\caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3\mu$ channel for Invariant mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.} |
247 |
|
\label{fig:FinalMatrix3muNoWtCut} |
248 |
|
\end{center} |
249 |
|
\end{figure} |