ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/AppendixFitTest.tex (file contents):
Revision 1.6 by beaucero, Mon Jul 28 14:30:36 2008 UTC vs.
Revision 1.9 by ymaravin, Tue Jul 29 02:38:23 2008 UTC

# Line 1 | Line 1
1 < \clearpage
2 < \newpage
3 < \appendix
4 < \section{Additional Cross Check on Background Estimation Studies}
5 <
6 < In figures~\ref{fig:AllFits}, the fit approximation of the invariant
7 < mass of \Z boson candidate is shown for each channel and for loose and
8 < tight criteria. The fit is performed using an addition of a
9 < convolution of a Gaussian and Breit-Wigner function and a line in
10 < order to fit the background. It has to be noticed that due to a lack
11 < of statistics in chowder soup, all bin with 0 events from chowder have
12 < been modified in order to avoid to have an error at 0. The
13 < corresponding error in the bin with no event correspond to the weight
14 < of each process in Chowder soup. One can see that the errors are
15 < large, and the fit is then not really constraint.
16 <
1 > \subsection{Further cross-checks}
2 > The test described in the previous Section illustrate the robustness of the
3 > matrix method to estimate the misidentification background correctly for varied
4 > jet flavor composition in the $\Z+jet$ sample.
5 >
6 > In the following we further scrutinize the details of the background estimation.
7 > We provide detailed information on the background extraction using the
8 > default selection criteria, that without the requirement on the \W candidate
9 > transverse mass, and finally using default selection criteria without subtracting
10 > backgrounds that have no genuine \Z bosons.
11 >
12 > \subsubsection{Details on extracting background with matrix method}
13 >
14 > In Fig.~\ref{fig:AllFits} we provide dilepton mass fit information for each channel
15 > for loose and tight \W lepton requirements using the full statistics of the CSA07 samples.
16 > The fit is performed using an addition of a convolution of a Gaussian and Breit-Wigner function
17 > and a line in order to fit the background. It has to be noticed that due to a lack
18 > of statistics in ``Chowder soup'' sample, all bins with 0 events from the sample
19 > have been modified in order to avoid to have a null uncertainty. The
20 > corresponding uncertainty in the bin with no events correspond to the weight
21 > of each process in the ``Chowder soup''. One can see that the uncertainties are
22 > large, and the fit is not really constrained.
23  
24   \begin{figure}[hbt]
25    \begin{center}
# Line 21 | Line 27 | large, and the fit is then not really co
27    \scalebox{0.3}{\includegraphics{figs/Fit2e1muLoose.eps}\includegraphics{figs/Fit2e1muTight.eps}}\\
28    \scalebox{0.3}{\includegraphics{figs/Fit2mu1eLoose.eps}\includegraphics{figs/Fit2mu1eTight.eps}}\\
29    \scalebox{0.3}{\includegraphics{figs/Fit3muLoose.eps}\includegraphics{figs/Fit3muTight.eps}}\\
30 <  \caption{Invariante mass of \Z boson candidate for the different samples studied on the left when the lepton pass the loose criteria, on the right when the lepton pass the tight criteria.}
30 >  \caption{Invariant mass of \Z boson candidate for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$
31 >                  signatures (from top to bottom) for the lepton passing loose (left) and tight (right) identification
32 >                  criteria.}
33    \label{fig:AllFits}
34    \end{center}
35   \end{figure}
36  
37 <
38 < The linear fit will take into account the background with non-genuine
39 < \Z candidate but it will also account for some part of \Z+jets and
40 < $Zb\bar{b}$ background as the gamma$^*$ will populate the side band.
41 < The comparison can be seen in table~\ref{tab:CompFit}.
37 > The linear fit takes into account not only the background with non-genuine
38 > \Z boson but it also accounts for some part of the \Z+jets and
39 > $Zb\bar{b}$ background as the $\gamma^*$ processes populate the sidebands as well.
40 > However, the results are still consistent within errors, as it can be seen by comparison
41 > of the last two columns in Table~\ref{tab:CompFit}.
42   \begin{table}[h]
43   \begin{center}
44   \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
45                      & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
46                      genuine \Z boson} \\
47 < Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & $t\bar{t}$ + $\W+jets$ & Fit result \\ \hline
47 > Channel    & $\Z+jets$ & $\Z b\bar{b}$ &   $t\bar{t}$ & $\W+jets$ & Combined & Fit result \\ \hline
48   $3e$ Loose &7.1 & 2.9 & 1.1 & 0.4 & 1.5 & 1.5$ \pm $3.0 \\\hline
49   $3e$ Tight &2.0 & 1.2 & 0.6 & 0.4 & 1.0 & 1.1$ \pm $2.8 \\\hline
50 < $2e1mu$ Loose &4.0 & 4.7 & 6.2 & 0.0 & 6.2 & 6.0$ \pm $4.1 \\\hline
51 < $2e1mu$ Tight &0.0 & 0.1 & 0.7 & 0.0 & 0.7 & 1.0$ \pm $2.8 \\\hline  
52 < $2mu1e$ Loose &10.1 & 2.9 & 0.8 & 0.0 & 0.8 & 1.6$ \pm $3.1 \\\hline
53 < $2mu1e$ Tight &1.8 & 1.3 & 0.6 & 0.0 & 0.6 & 1.0$ \pm $2.7 \\\hline
54 < $3mu$ Loose &4.5 & 4.2 & 5.9 & 0.0 & 5.9 & 3.1$ \pm $3.5 \\\hline
55 < $3mu$ Tight &0.1 & 0.3 & 0.3 & 0.0 & 0.3 & 0.5$ \pm $2.5 \\\hline
50 > $2e1\mu$ Loose &4.0 & 4.7 & 6.2 & 0.0 & 6.2 & 6.0$ \pm $4.1 \\\hline
51 > $2e1\mu$ Tight &0.0 & 0.1 & 0.7 & 0.0 & 0.7 & 1.0$ \pm $2.8 \\\hline  
52 > $2\mu 1e$ Loose &10.1 & 2.9 & 0.8 & 0.0 & 0.8 & 1.6$ \pm $3.1 \\\hline
53 > $2\mu 1e$ Tight &1.8 & 1.3 & 0.6 & 0.0 & 0.6 & 1.0$ \pm $2.7 \\\hline
54 > $3\mu$ Loose &4.5 & 4.2 & 5.9 & 0.0 & 5.9 & 3.1$ \pm $3.5 \\\hline
55 > $3\mu$ Tight &0.1 & 0.3 & 0.3 & 0.0 & 0.3 & 0.5$ \pm $2.5 \\\hline
56   \end{tabular}
57   \end{center}
58 < \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
51 < }
58 > \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied on the \W lepton candidate.}
59   \label{tab:CompFit}
60   \end{table}
61  
62 <
63 < Nevertheless in association with the matrix method the background is
64 < well estimated as one can see in table~\ref{tab:FinalXC}.The corresponding figure can be
65 < seen~\ref{fig:FinalMatrix3e}~\ref{fig:FinalMatrix2e1mu}~\ref{fig:FinalMatrix2mu1e}~\ref{fig:FinalMatrix3mu}
66 < for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively.
62 > The comparison between estimated background and the MC truth information is provided
63 > in Table~\ref{tab:FinalXCLoose} for ``Loose'' and \ref{tab:FinalXC} for ``Tight'' lepton candidates.
64 > Within uncertainties the results agree with each other for every signature and every category of
65 > \W lepton identification. The agreement between predicted and MC truth background
66 > as function of the dilepton mass is given in Figs.~\ref{fig:FinalMatrix3e}-\ref{fig:FinalMatrix3mu}
67 > for all four signal categories respectively.
68  
69   \begin{table}[h]
70    \begin{center}
71   \begin{tabular}{lcccc} \hline \hline
72   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
73 < $N$ - ZZ -Zgamma &12.4$\pm$1.0 &8.7$\pm$0.0&13.1$\pm$0.9&10.6$\pm$0.0\\ \hline
74 < $N^{non genuine Z}$ (Fit)&1.1$\pm$2.8&1.0$\pm$2.8&1.0$\pm$2.7&0.5$\pm$2.5\\ \hline
75 < $N^{genuine Z}$ (matrix method)&3.2 $\pm$1.8&0.9 $\pm$1.1&4.6 $\pm$2.1&0.9 $\pm$1.1\\ \hline
76 < $N^{WZ}$ & 8.2$\pm$3.5&7.7 $\pm$3.2 &7.6$\pm$3.5&9.6 $\pm$2.8\\ \hline
77 < \WZ from MC &7.9&8.1& 9.0 &10.1\\
70 <
73 > $N$ - \ZZ -\Z$\gamma$ &19.9$\pm$1.0&23.6$\pm$0.0&23.4$\pm$1.0&25.5$\pm$0.0\\ \hline
74 > $N^{non genuine \Z}$ (Fit)&1.5$\pm$3.0&6.0$\pm$4.1&1.6$\pm$3.1&3.1$\pm$3.5\\ \hline
75 > $N^{genuine \Z}$ (matrix method)&10.1 $\pm$6.8&15.8 $\pm$8.4&14.5 $\pm$6.8&15.8 $\pm$5.7\\ \hline
76 > $N^{\WZ}$ & 8.8$\pm$7.5&7.8$\pm$11.1&7.9$\pm$7.6&9.8 $\pm$7.4\\ \hline
77 > \WZ from MC &8.1&9.0& 9.2 &11.3\\
78   \hline
79   \end{tabular}
73
80   \caption{Expected number of selected events for an integrated luminosity of 300
81 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
82 < \label{tab:FinalXC}
81 > pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV
82 > with the full selection criteria applied but the requirement on the \W lepton which is
83 > required to pass only ``Loose'' criteria.}
84 > \label{tab:FinalXCLoose}
85   \end{center}
86   \end{table}
87  
80
88   \begin{table}[h]
89    \begin{center}
90   \begin{tabular}{lcccc} \hline \hline
91   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
92 < $N$ - ZZ -Zgamma &19.9$\pm$1.0&23.6$\pm$0.0&23.4$\pm$1.0&25.5$\pm$0.0\\ \hline
93 < $N^{non genuine Z}$ (Fit)&1.5$\pm$3.0&6.0$\pm$4.1&1.6$\pm$3.1&3.1$\pm$3.5\\ \hline
94 < $N^{genuine Z}$ (matrix method)&10.1 $\pm$6.8&15.8 $\pm$8.4&14.5 $\pm$6.8&15.8 $\pm$5.7\\ \hline
95 < $N^{WZ}$ & 8.8$\pm$7.5&7.8$\pm$11.1&7.9$\pm$7.6&9.8 $\pm$7.4\\ \hline
96 < \WZ from MC &8.1&9.0& 9.2 &11.3\\
90 <
91 < \hline
92 > $N$ - ZZ -Zgamma &12.4$\pm$1.0 &8.7$\pm$0.1 &13.1$\pm$0.9&10.6$\pm$0.0\\ \hline
93 > $N^{non genuine Z}$ (Fit)&1.1$\pm$2.8&1.0$\pm$2.8&1.0$\pm$2.7&0.5$\pm$2.5\\ \hline
94 > $N^{genuine Z}$ (matrix method)&3.2 $\pm$1.8&0.9 $\pm$1.1&4.6 $\pm$2.1&0.9 $\pm$1.1\\ \hline
95 > $N^{WZ}$ & 8.2$\pm$3.5&7.7 $\pm$3.2 &7.6$\pm$3.5&9.6 $\pm$2.8\\ \hline
96 > \WZ from MC &7.9&8.1& 9.0 &10.1\\ \hline
97   \end{tabular}
98 <
99 < \caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300
100 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
101 < \label{tab:FinalXCLoose}
98 > \caption{Expected number of selected events for an integrated luminosity of 300
99 > pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV for
100 > the full selection criteria applied.}
101 > \label{tab:FinalXC}
102   \end{center}
103   \end{table}
104  
105   \begin{figure}[hbt]
106    \begin{center}
107 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}}
108 <  \caption{Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
107 >  \scalebox{0.62}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}}
108 >  \caption{Comparison between background predicted with matrix method and MC truth information for the
109 >  $3e$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
110 >  on the \W lepton for background (a, b) and signal (c, d).}
111    \label{fig:FinalMatrix3e}
112    \end{center}
113   \end{figure}
114  
115   \begin{figure}[hbt]
116    \begin{center}
117 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}}
118 <  \caption{Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
119 <  \label{fig:FinalMatrix2e1mu}
117 >  \scalebox{0.62}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}}
118 >  \caption{
119 >  Comparison between background predicted with matrix method and MC truth information for the
120 >  $2e1\mu$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
121 >  on the \W lepton for background (a, b) and signal (c, d).}
122 >    \label{fig:FinalMatrix2e1mu}
123    \end{center}
124   \end{figure}
125  
126   \begin{figure}[hbt]
127    \begin{center}
128 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}}
129 <  \caption{Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
128 >  \scalebox{0.62}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}}
129 >  \caption{Comparison between background predicted with matrix method and MC truth information for the
130 >  $2\mu 1e$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
131 >  on the \W lepton for background (a, b) and signal (c, d).}
132    \label{fig:FinalMatrix2mu1e}
133    \end{center}
134   \end{figure}
135  
136   \begin{figure}[hbt]
137    \begin{center}
138 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}}
139 <  \caption{Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
138 >  \scalebox{0.62}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}}
139 >  \caption{Comparison between background predicted with matrix method and MC truth information for the
140 >  $3\mu$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
141 >  on the \W lepton for background (a, b) and signal (c, d).}
142    \label{fig:FinalMatrix3mu}
143    \end{center}
144   \end{figure}
145  
146  
147 + \clearpage
148 + \subsubsection{Background estimation without the \W boson transverse mass requirement}
149  
150 < Check on Without MWtCut Samples~\ref{tab:FitNoMWt} (Linear Fit):
150 > We also estimate background to the \WZ signal for the selection criteria without
151 > the requirement on the transverse \W boson candidate mass. The results of
152 > extraction of the background sources without real \Z boson are given in Table~\ref{tab:FitNoMWt}.
153   \begin{table}[h]
154   \begin{center}
155   \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
# Line 148 | Line 166 | $3mu$ Loose &43.7 & 84.9 & 12.0 & 0 & 12
166   $3mu$ Tight &0.8 & 2.3 & 0.3 & 0 & 0.3 & 0.8$\pm$2.8 \\\hline
167   \end{tabular}
168   \end{center}
169 < \caption{Comparison between Monte Carlo truth information and the results of the fit for the background without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The ``Loose'' and ``Tight'' selection criteria applied for third lepton considered.
170 < %I AM NOT SURE I UNDERSTAND WHAT IS WRITTEN HERE
171 < % One has to consider that this study as been perform on a smaller sample than the other part of the analysis a 10\% statistics error as to be counted until the study is performed on the whole samples.
154 < }
169 > \caption{Comparison between Monte Carlo truth information and the results of the fit for the background
170 > without genuine \Z boson. Number of events are obtained in the invariant mass range between 81 and 101 GeV. The
171 > ``Loose'' and ``Tight'' selection criteria applied on the \W lepton.}
172   \label{tab:FitNoMWt}
173   \end{table}
174  
175 <
176 < In table~\ref{tab:FinalNoMWtCut}, the final results are presented if
177 < we remove the cut on the W transverse mass. Everthing is still in
178 < perfect agreement... The corresponding figure can be
162 < seen~\ref{fig:FinalMatrix3eNoWtCut}~\ref{fig:FinalMatrix2e1muNoWtCut}~\ref{fig:FinalMatrix2mu1eNoWtCut}~\ref{fig:FinalMatrix3muNoWtCut}
163 < for $3e$, $2e1\mu$, $2\mu1e$ and $3\mu$ channels respectively.
175 > The comparison between the estimated and MC truth backgrounds is given
176 > in Tables~\ref{tab:FinalNoMWtCutLoose} and {tab:FinalNoMWtCut} for ``Loose''
177 > and ``Tight'' requirements on the \W lepton. The results agree with each other
178 > within one sigma of uncertainty.
179  
180   \begin{table}[h]
181    \begin{center}
182   \begin{tabular}{lcccc} \hline \hline
183   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
184 < $N$ - ZZ -Zgamma &35.9505$\pm$7.12087&15.9252$\pm$0.00840717&40.1673$\pm$5.70847&17.967$\pm$0.00420358\\ \hline
185 < $N^{non genuine Z}$ (Fit)&3.76001$\pm$3.52367&1.45461$\pm$3.15729&4.10686$\pm$2.52845&0.750563$\pm$2.77128\\ \hline
186 < $N^{genuine Z}$ (matrix method)&18.7345 $\pm$6.09299&8.35304 $\pm$6.61818&23.4279 $\pm$7.47204& 8.86174 $\pm$7.06819\\ \hline
187 < $N^{WZ}$ &10.0951 $\pm$7.97988&7.56371 $\pm$7.47561&11.031 $\pm$8.8933& 9.10106 $\pm$7.62906\\ \hline
188 < \WZ from MC &11.6&12.3& 13.3 &14.9\\
174 <
184 > $N$ - \ZZ -\Z$\gamma$  &75.3$\pm$7.3&146.6$\pm$0.0&90.4$\pm$5.9&156.9$\pm$0.0\\ \hline
185 > $N^{non genuine \Z}$ (Fit)&6.6$\pm$4.2&16.9$\pm$5.5&6.9$\pm$4.4&11.0$\pm$5.0\\ \hline
186 > $N^{genuine \Z}$ (matrix method)&58.5 $\pm$14.4&139.2 $\pm$20.3&73.2 $\pm$14.9& 147.7 $\pm$14.7\\ \hline
187 > $N^{\WZ}$  &9.5$\pm$16.4&7.4 $\pm$27.0&11.3 $\pm$17.0&  9.2 $\pm$19.0\\\hline
188 > \WZ from MC &12.0&14.2& 13.6 &17.2\\
189   \hline
190   \end{tabular}
191 <
192 < \caption{Expected number of selected events for an integrated luminosity of 300
193 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
194 < \label{tab:FinalNoMWtCut}
191 > \caption{Expected number of selected events for an integrated luminosity of 300 \invpb
192 > for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Loose''
193 > \W lepton.}
194 > \label{tab:FinalNoMWtCutLoose}
195   \end{center}
196   \end{table}
197  
# Line 185 | Line 199 | $N^{WZ}$ &10.0951 $\pm$7.97988&7.56371 $
199    \begin{center}
200   \begin{tabular}{lcccc} \hline \hline
201   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
202 < $N$ - ZZ -Zgamma  &75.3302$\pm$7.2764&146.642$\pm$0.0336287&90.4007$\pm$5.87661&156.943$\pm$0.0252215\\ \hline
203 < $N^{non genuine Z}$ (Fit)&6.58354$\pm$4.18822&16.9415$\pm$5.45238&6.90489$\pm$4.44438&10.9672$\pm$4.95535\\ \hline
204 < $N^{genuine Z}$ (matrix method)&58.5455 $\pm$14.4155&139.217 $\pm$20.2565&73.2121 $\pm$14.8922& 147.696 $\pm$14.674\\ \hline
205 < $N^{WZ}$  &9.50837 $\pm$16.3918&7.39079 $\pm$26.9642&11.312 $\pm$17.0061&  9.22217 $\pm$18.977\\\hline
206 < \WZ from MC &12.0&14.2& 13.6 &17.2\\
193 <
202 > $N$ - \ZZ -\Z$\gamma$ &36.0$\pm$7.1&15.9$\pm$0.0&40.2$\pm$5.7&18.0$\pm$0.0\\ \hline
203 > $N^{non genuine \Z}$ (Fit)&3.8$\pm$3.5&1.5$\pm$3.2&4.1$\pm$2.5&0.8$\pm$2.8\\ \hline
204 > $N^{genuine \Z}$ (matrix method)&18.7 $\pm$6.1&8.4 $\pm$6.6&23.4 $\pm$7.5& 8.9 $\pm$7.1\\ \hline
205 > $N^{\WZ}$ &10.1 $\pm$8.0&7.6 $\pm$7.5&11.0 $\pm$8.9& 9.1 $\pm$7.6\\ \hline
206 > \WZ from MC &11.6&12.3& 13.3 &14.9\\
207   \hline
208   \end{tabular}
209 <
210 < \caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300
198 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
199 < \label{tab:FinalNoMWtCutLoose}
209 > \caption{Expected number of data events for an integrated luminosity of 300 \invpb for the signal and estimated background for 81 GeV $< M_Z < $ 101 GeV and for ``Tight'' \W lepton.}
210 > \label{tab:FinalNoMWtCut}
211   \end{center}
212   \end{table}
213  
214 < \begin{figure}[hbt]
215 <  \begin{center}
216 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3eLooseTightZmassNoCutMWt.eps}}
217 <  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
218 <  \label{fig:FinalMatrix3eNoWtCut}
219 <  \end{center}
220 < \end{figure}
221 <
222 < \begin{figure}[hbt]
223 <  \begin{center}
224 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassNoCutMWt.eps}}
225 <  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2e1\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
226 <  \label{fig:FinalMatrix2e1muNoWtCut}
227 <  \end{center}
228 < \end{figure}
229 <
230 < \begin{figure}[hbt]
231 <  \begin{center}
232 <  \scalebox{0.8}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassNoCutMWt.eps}}
233 <  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $2\mu1e$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
223 <  \label{fig:FinalMatrix2mu1eNoWtCut}
224 <  \end{center}
225 < \end{figure}
214 > \subsubsection{Performance of the matrix method without background categorization}
215 > The performance of the matrix method depends on the validity of the following two assumptions:
216 > the $p_{fake}$ should describe the probability of misidentified jets passing loose criteria to also
217 > pass tight lepton requirements, and there must be only one misidentified lepton. If the former
218 > challenge can be tackled by estimating $p_{fake}$ in the sample with the jet composition similar
219 > to that of the major \WZ background (\W+jets in this case), then the latter can be safely assumed
220 > if the sources of backgrounds with multiple leptons are suppressed. The latter can be checked
221 > with data by measuring comparing \W+jets cross-section measured in data with MC truth information
222 > and estimating the \W+jets background to the \WZ signal. As total $\W+jets$ background to
223 > \WZ signal is very small, we can neglect background contribution with multiple misidentified leptons
224 > to the signal.
225 >
226 > Therefore, with small data sample, it might be a good approximation not to divide instrumental
227 > background into genuine \Z boson and fake \Z boson categories, but apply the matrix method
228 > directly to the dilepton
229 > invariant mass after the physics backgrounds are subtracted. This results in smaller
230 > systematic uncertainties associated with the fit. We follow this procedure and provide the
231 > comparisons between predicted and true MC backgrounds
232 > in Tables~\ref{tab:FinalNoFitLoose} and \ref{tab:FinalNoFit} for ``Loose'' and ``Tight''
233 > \W lepton, respectively.
234  
227 \begin{figure}[hbt]
228  \begin{center}
229  \scalebox{0.8}{\includegraphics{figs/MatrixMethod3muLooseTightZmassNoCutMWt.eps}}
230  \caption{Before M$_T$(W) criteria: Result of Matrix Method application for $3\mu$ channel for Invariante mass of \Z boson candidate plot (a) and (c) when the lepton pass the loose criteria, (b) and (d) when the lepton pass the tight criteria. (a) and (b) represent the estimation of the background, (c) and (d) represent estimation of signal.}
231  \label{fig:FinalMatrix3muNoWtCut}
232  \end{center}
233 \end{figure}
234
235
236 WIHTOUT FITTING:
235   \begin{table}[h]
236    \begin{center}
237   \begin{tabular}{lcccc} \hline \hline
238   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
239 < $N$ - ZZ -Zgamma &12.4437$\pm$0.992046 &8.69811$\pm$0&13.1255$\pm$0.937399&10.5715$\pm$0\\ \hline
240 < $N^{genuine Z}$ (matrix method)&3.21939 $\pm$1.56769&15.8043 $\pm$0.691583&4.63515 $\pm$1.91862&0.945652 $\pm$1.12544\\ \hline
241 < $N^{WZ}$ &8.23222 $\pm$1.56769&7.78552 $\pm$0.691583&7.55297 $\pm$1.91862&9.62584 $\pm$1.12544\\ \hline
242 < \WZ from MC &7.9&8.1& 9.0 &10.1\\
245 <
239 > $N$ - \ZZ -\Z$\gamma$  &19.9$\pm$1.0&23.6$\pm$0.0&23.4$\pm$1.0&25.5$\pm$0.0\\ \hline
240 > $N^{genuine \Z}$ (matrix method)&10.1 $\pm$0.6&0.9 $\pm$1.0&14.5 $\pm$0.9&15.8 $\pm$0.7\\ \hline
241 > $N^{\WZ}$  &8.8 $\pm$0.6&7.7 $\pm$1.0&7.9 $\pm$0.9&9.8 $\pm$0.7\\ \hline
242 > \WZ from MC &8.1&9.0& 9.2 &11.3\\
243   \hline
244   \end{tabular}
245 <
246 < \caption{Expected number of selected events for an integrated luminosity of 300
247 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
251 < \label{tab:FinalNoFit}
245 > \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
246 > and estimated background for 81 GeV $< M_Z < $ 101 GeV with ``Loose'' \W lepton criteria.}
247 > \label{tab:FinalNoFitLoose}
248   \end{center}
249   \end{table}
250  
# Line 256 | Line 252 | $N^{WZ}$ &8.23222 $\pm$1.56769&7.78552 $
252    \begin{center}
253   \begin{tabular}{lcccc} \hline \hline
254   & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
255 < $N$ - ZZ -Zgamma  &19.9098$\pm$1.00886&23.5941$\pm$0.00420358&23.3592$\pm$0.95001&25.5227$\pm$0.00420358\\ \hline
256 < $N^{genuine Z}$ (matrix method)&10.0606 $\pm$0.621487&0.948261 $\pm$1.03651&14.4848 $\pm$0.885223&15.7609 $\pm$0.692575\\ \hline
257 < $N^{WZ}$  &8.84029 $\pm$0.62148&7.74985 $\pm$1.03651&7.92435 $\pm$0.885223&9.75762 $\pm$0.692575\\ \hline
258 < \WZ from MC &8.1&9.0& 9.2 &11.3\\
263 <
264 < \hline
255 > $N$ - \ZZ -\Z$\gamma$ &12.4$\pm$1.0 &8.7$\pm$0&13.1$\pm$0.9&10.6$\pm$0.0\\ \hline
256 > $N^{genuine \Z}$ (matrix method)&3.2 $\pm$1.6&15.8 $\pm$0.7&4.6 $\pm$1.9&0.9 $\pm$1.1\\ \hline
257 > $N^{\WZ}$ &8.2 $\pm$1.6&7.8 $\pm$0.7&7.6 $\pm$1.9&9.6$\pm$1.1\\ \hline
258 > \WZ from MC &7.9&8.1& 9.0 &10.1\\ \hline
259   \end{tabular}
260 <
261 < \caption{Loose Sample: Expected number of selected events for an integrated luminosity of 300
262 < pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV.}
269 < \label{tab:FinalNoFitLoose}
260 > \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
261 > and estimated background for 81 GeV $< M_Z < $ 101 GeV and ``Tight'' \W lepton requirement.}
262 > \label{tab:FinalNoFit}
263   \end{center}
264   \end{table}
265 + The agreement between estimated and MC true backgrounds is excellent.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines