1 |
beaucero |
1.1 |
\newpage
|
2 |
|
|
\clearpage
|
3 |
ymaravin |
1.2 |
\section{Cross-checks using pseudo-experiments}
|
4 |
beaucero |
1.1 |
|
5 |
ymaravin |
1.2 |
The statistics of Chowder soup should correspond to 1 \invfb of integrated luminosity.
|
6 |
|
|
Thus, in this Section we perform 10 pseudo experiments with a step of 100 \invpb each. In
|
7 |
|
|
Tables~\ref{tab:Pseudo3e}, \ref{tab:Pseudo2e1mu}, \ref{tab:Pseudo2mu1e}, and \ref{tab:Pseudo3mu}
|
8 |
|
|
the measured event yield is given for every signature channel as function of the integrated
|
9 |
|
|
luminosity. The uncertainties are systematic uncertainties associated with the background
|
10 |
|
|
estimation method only. The results agree with Monte Carlo truth information within one sigma.
|
11 |
beaucero |
1.1 |
|
12 |
|
|
\begin{table}[h]
|
13 |
|
|
\begin{center}
|
14 |
|
|
\begin{tabular}{lccccc} \hline \hline
|
15 |
|
|
Luminosity (pb$^{-1}$) & 100 & 200 &300 &400 & 500 \\ \hline
|
16 |
|
|
Observed Number of Events & 5 &8 & 10 & 17 & 23 \\
|
17 |
|
|
$N$ - ZZ -Zgamma &4.5 $\pm$0.4 &7.1 $\pm$0.7 &8.6 $\pm$1.1 &15.1$\pm$1.4 &20.7 $\pm$1.8 \\
|
18 |
|
|
$N^{genuine Z}$ (matrix method)&0.9 $\pm$0.6 &1.8 $\pm$1.0 &3.2 $\pm$1.4 & 5.6 $\pm$2.4 & 7.4 $\pm$3.2 \\ \hline
|
19 |
|
|
$N^{WZ}$ &3.6 $\pm$0.7 &5.2 $\pm$1.3 &5.4 $\pm$1.8 & 9.6 $\pm$2.8 &13.3 $\pm$3.7 \\ \hline
|
20 |
|
|
\WZ from MC & 3 &4 &5 &9 &14 \\
|
21 |
|
|
\hline
|
22 |
|
|
\end{tabular}
|
23 |
ymaravin |
1.2 |
\\
|
24 |
beaucero |
1.1 |
\begin{tabular}{lccccc} \hline \hline
|
25 |
|
|
Luminosity (pb$^{-1}$) &600 &700 & 800 & 900 & 1000 \\ \hline
|
26 |
|
|
Observed Number of Events & 25 & 28 & 32 & 36 & 38\\
|
27 |
|
|
$N$ - ZZ -Zgamma &22.2 $\pm$2.2 &24.7 $\pm$2.5 &28.3 $\pm$2.9 &54.5 $\pm$3.5 &58.0 $\pm$3.9 \\
|
28 |
|
|
$N^{genuine Z}$ (matrix method) & 7.9 $\pm$3.5 & 9.7 $\pm$4.0 & 9.7 $\pm$4.4 &33.2 $\pm$7.4 &36.1 $\pm$8.2\\\hline
|
29 |
|
|
$N^{WZ}$ &14.3 $\pm$4.1 &15.0 $\pm$4.7 &18.6 $\pm$5.2 &21.3 $\pm$8.2 &21.9 $\pm$9.1\\\hline
|
30 |
|
|
\WZ from MC &15 &18 &20 &23 &24\\
|
31 |
|
|
\hline
|
32 |
|
|
\end{tabular}
|
33 |
|
|
\caption{Expected number of selected events for an integrated luminosity from 100
|
34 |
|
|
pb$^{-1}$ to 1000 pb$^{-1}$ for 3e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
|
35 |
|
|
.}
|
36 |
|
|
\label{tab:Pseudo3e}
|
37 |
|
|
\end{center}
|
38 |
|
|
\end{table}
|
39 |
|
|
|
40 |
|
|
\begin{table}[h]
|
41 |
|
|
\begin{center}
|
42 |
|
|
\begin{tabular}{lccccc} \hline \hline
|
43 |
|
|
Luminosity (pb$^{-1}$) & 100 & 200 &300 &400 & 500 \\ \hline
|
44 |
|
|
Observed Number of Events & 4 & 5 & 9 &12 & 18\\ \hline
|
45 |
|
|
$N$ - ZZ -Zgamma &3.8 $\pm$0.2 &4.6 $\pm$0.4 &8.4 $\pm$0.6 &13.2 $\pm$0.8 &17.0 $\pm$1.0\\
|
46 |
|
|
$N^{genuine Z}$ (matrix method) &0.3 $\pm$0.3 &0.6 $\pm$0.6 &0.8 $\pm$0.9 & 1.1 $\pm$1.4 & 1.1 $\pm$1.6\\\hline
|
47 |
|
|
$N^{WZ}$ &3.5 $\pm$0.4 &4.0 $\pm$0.7 &7.6 $\pm$1.1 &12.1 $\pm$1.6 &15.9 $\pm$1.9 \\\hline
|
48 |
|
|
\WZ from MC & 2 & 3 & 7 & 11 & 14 \\
|
49 |
|
|
\hline
|
50 |
|
|
\end{tabular}
|
51 |
ymaravin |
1.2 |
\\
|
52 |
beaucero |
1.1 |
\begin{tabular}{lccccc} \hline \hline
|
53 |
|
|
Luminosity (pb$^{-1}$) &600 &700 & 800 & 900 & 1000 \\ \hline
|
54 |
|
|
Observed Number of Events & 21 & 23 & 27 & 27 & 29\\\hline
|
55 |
|
|
$N$ - ZZ -Zgamma &19.8 $\pm$1.2 &21.6 $\pm$1.4 &25.4 $\pm$1.6 &25.2 $\pm$1.8 &27.0 $\pm$2.0\\
|
56 |
|
|
$N^{genuine Z}$ (matrix method) &1.3 $\pm$1.8 & 1.5 $\pm$2.0 & 1.9 $\pm$2.5 & 2.1 $\pm$2.6 & 2.6 $\pm$3.1\\\hline
|
57 |
|
|
$N^{WZ}$ &18.5 $\pm$2.1 &20.1 $\pm$2.5 &23.5 $\pm$3.0 &23.1 $\pm$3.2 &24.4 $\pm$3.7\\\hline
|
58 |
|
|
\WZ from MC & 16 & 18 & 22 & 22 & 24\\
|
59 |
|
|
\hline\\
|
60 |
|
|
\end{tabular}
|
61 |
|
|
\caption{Expected number of selected events for an integrated luminosity from 100
|
62 |
|
|
pb$^{-1}$ to 1000 pb$^{-1}$ for 2e1$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
|
63 |
|
|
.}
|
64 |
|
|
\label{tab:Pseudo2e1mu}
|
65 |
|
|
\end{center}
|
66 |
|
|
\end{table}
|
67 |
|
|
|
68 |
|
|
\begin{table}[h]
|
69 |
|
|
\begin{center}
|
70 |
|
|
\begin{tabular}{lccccc} \hline \hline
|
71 |
|
|
Luminosity (pb$^{-1}$) & 100 & 200 &300 &400 & 500 \\ \hline
|
72 |
|
|
Observed Number of Events & 4 & 13 &17 & 21 & 25 \\ \hline
|
73 |
|
|
$N$ - ZZ -Zgamma &4.8 $\pm$0.2 &12.5 $\pm$0.5 &16.3$\pm$0.7 &20.1 $\pm$0.9 &23.8 $\pm$1.2\\
|
74 |
|
|
$N^{genuine Z}$ (matrix method) &2.3 $\pm$0.8 & 5.1 $\pm$2.0 & 6.0 $\pm$2.6 & 7.4 $\pm$3.2 & 7.9 $\pm$3.5\\\hline
|
75 |
|
|
$N^{WZ}$ &2.4 $\pm$0.9 & 7.4 $\pm$2.1 &10.3 $\pm$2.7 &12.7$\pm$3.3 &16.0 $\pm$3.7\\ \hline
|
76 |
|
|
\WZ from MC & 2 & 6 & 9 & 12 & 14 \\
|
77 |
|
|
\hline
|
78 |
|
|
\end{tabular}
|
79 |
ymaravin |
1.2 |
\\
|
80 |
beaucero |
1.1 |
\begin{tabular}{lccccc} \hline \hline
|
81 |
|
|
Luminosity (pb$^{-1}$) &600 &700 & 800 & 900 & 1000 \\ \hline
|
82 |
|
|
Observed Number of Events & 32 & 35 & 40 & 46 & 55 \\ \hline
|
83 |
|
|
$N$ - ZZ -Zgamma &30.6 $\pm$1.4 &33.4 $\pm$1.6 &38.1 $\pm$1.9 &43.9 $\pm$2.1 &52.7 $\pm$2.3 \\
|
84 |
|
|
$N^{genuine Z}$ (matrix method) &10.6 $\pm$4.7 &11.1 $\pm$5.0 &12.5 $\pm$5.7 &13.8 $\pm$6.4 &15.2 $\pm$7.4 \\ \hline
|
85 |
|
|
$N^{WZ}$ &20.0 $\pm$4.9 &22.3 $\pm$5.3 &25.7 $\pm$6.0 &30.1 $\pm$6.7 &37.5 $\pm$7.8 \\ \hline
|
86 |
|
|
\WZ from MC & 19 & 22 & 26 & 29 & 32\\
|
87 |
|
|
\hline\\
|
88 |
|
|
\end{tabular}
|
89 |
|
|
\caption{Expected number of selected events for an integrated luminosity from 100
|
90 |
|
|
pb$^{-1}$ to 1000 pb$^{-1}$ for 2$\mu$1e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
|
91 |
|
|
.}
|
92 |
|
|
\label{tab:Pseudo2mu1e}
|
93 |
|
|
\end{center}
|
94 |
|
|
\end{table}
|
95 |
|
|
|
96 |
|
|
\begin{table}[h]
|
97 |
|
|
\begin{center}
|
98 |
|
|
\begin{tabular}{lccccc} \hline \hline
|
99 |
|
|
Luminosity (pb$^{-1}$) & 100 & 200 &300 &400 & 500 \\ \hline
|
100 |
|
|
Observed Number of Events & 1 & 1 & 4 & 6 & 8 \\ \hline
|
101 |
|
|
$N$ - ZZ -Zgamma &0.8 $\pm$0.2 &0.5 $\pm$0.5 &3.3 $\pm$0.7 &5.1 $\pm$0.9 &6.8 $\pm$1.2\\
|
102 |
|
|
$N^{genuine Z}$ (matrix method) &0.3 $\pm$0.2 &0.6 $\pm$0.5 &0.9 $\pm$0.8 &1.2 $\pm$1.1 &1.9 $\pm$1.6\\\hline
|
103 |
|
|
$N^{WZ}$ &0.4 $\pm$0.3 &-0.1$\pm$0.7 &2.4 $\pm$1.0 &3.8 $\pm$1.5 &4.9 $\pm$2.0\\ \hline
|
104 |
|
|
\WZ from MC & 1 & 1 & 4 & 6 & 8 \\
|
105 |
|
|
\hline
|
106 |
|
|
\end{tabular}
|
107 |
ymaravin |
1.2 |
\\
|
108 |
beaucero |
1.1 |
\begin{tabular}{lccccc} \hline \hline
|
109 |
|
|
Luminosity (pb$^{-1}$) &600 &700 & 800 & 900 & 1000 \\ \hline
|
110 |
|
|
Observed Number of Events & 10 & 14 & 18 & 22 & 24 \\ \hline
|
111 |
|
|
$N$ - ZZ -Zgamma &8.6 $\pm$1.4 &12.3 $\pm$1.6 &16.1 $\pm$1.9 &19.9 $\pm$2.1 &21.7 $\pm$2.3\\
|
112 |
|
|
$N^{genuine Z}$ (matrix method) &2.4 $\pm$2.1 & 2.7 $\pm$2.4 & 2.7 $\pm$2.7 & 3.2 $\pm$3.1 & 3.4 $\pm$3.4\\ \hline
|
113 |
|
|
$N^{WZ}$ &6.2 $\pm$2.5 & 9.7 $\pm$2.9 &13.4 $\pm$3.3 &16.7 $\pm$3.8 &18.2 $\pm$4.1\\\hline
|
114 |
|
|
\WZ from MC & 10 & 13 & 15 & 19 & 21\\
|
115 |
ymaravin |
1.2 |
\hline
|
116 |
beaucero |
1.1 |
\end{tabular}
|
117 |
|
|
\caption{Expected number of selected events for an integrated luminosity from 100
|
118 |
|
|
pb$^{-1}$ to 1000 pb$^{-1}$ for 3$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
|
119 |
|
|
.}
|
120 |
|
|
\label{tab:Pseudo3mu}
|
121 |
|
|
\end{center}
|
122 |
|
|
\end{table}
|
123 |
|
|
|
124 |
ymaravin |
1.2 |
Unfortunately, the statistics in all samples do not allow us to perform proper pseudo-experiments:
|
125 |
beaucero |
1.1 |
\begin{itemize}
|
126 |
ymaravin |
1.2 |
\item \W + 0 jets is generated for the statistics below 100 pb$^{-1}$, nevertheless we
|
127 |
|
|
do not expect to have so much events after the full selection is applied.
|
128 |
|
|
\item at 600 pb$^{-1}$, 12\% of \W + 3 jet, 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate. Once again,
|
129 |
|
|
this production is not so much expected to contribute directly to the final state studied.
|
130 |
|
|
\item at 700 pb$^{-1}$, 6\% of \W + 5 jet 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate.
|
131 |
|
|
\item at 700 pb$^{-1}$, 8\% of \Z + 0 jet is missing to make a valid estimate. This is not a major background
|
132 |
|
|
for the analysis, see note above.
|
133 |
|
|
\item at 900 pb$^{-1}$, 6\% and 7\% \W + 1 jet 100 $<\hat{p}<$ 300 and \W + 2 jets 100 $<\hat{p}<$ 300, respectively
|
134 |
|
|
are missing to make a valid estimation.
|
135 |
|
|
\item at 1 fb$^{-1}$, mainly all \W + jets have insufficient statistics to make a valid pseudo-experiment.
|
136 |
|
|
These samples are not fundamental as the contribution of this process to \WZ final state is very small.
|
137 |
|
|
However, 9\% of \Z + 1 jet 0$<\hat{p}<$100, 10\% of \Z + 2 jets 0$<\hat{p}<$100 and 2\% of \Z + 3 jets 0$<\hat{p}<$100
|
138 |
|
|
cannot be included in the event yield. This can be a problem and the results at 1 \invfb should not be trusted.
|
139 |
beaucero |
1.1 |
\end{itemize}
|
140 |
|
|
|