ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixPseudoExp.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/AppendixPseudoExp.tex (file contents):
Revision 1.1 by beaucero, Fri Aug 1 23:22:16 2008 UTC vs.
Revision 1.2 by ymaravin, Fri Aug 8 00:05:00 2008 UTC

# Line 1 | Line 1
1   \newpage
2   \clearpage
3 < \section{Cross-checks using Pseudo Experiment}
3 > \section{Cross-checks using pseudo-experiments}
4  
5 < The statistics of Chowder soup should correspond to 1fb$^{-1}$ of data
6 < taking, so 10 pseudo experiment have been done by steps of
7 < 100pb$^{-1}$. In
8 < table~\ref{tab:Pseudo3e}~\ref{tab:Pseudo2e1mu}~\ref{tab:Pseudo2mu1e}~\ref{tab:Pseudo3mu},
9 < the event yield for each steps of luminosity is given respectively for
10 < each channel. The non-genuine \Z background is not considered as a
11 < separate background and it is included in the Matrix Method. The
12 < results are in agreement within one sigma.
5 > The statistics of Chowder soup should correspond to 1 \invfb of integrated luminosity.
6 > Thus, in this Section we perform 10 pseudo experiments with a step of 100 \invpb each. In
7 > Tables~\ref{tab:Pseudo3e}, \ref{tab:Pseudo2e1mu}, \ref{tab:Pseudo2mu1e}, and \ref{tab:Pseudo3mu}
8 > the measured event yield is given for every signature channel as function of the integrated
9 > luminosity. The uncertainties are systematic uncertainties associated with the background
10 > estimation method only. The results agree with Monte Carlo truth information within one sigma.
11  
12   \begin{table}[h]
13    \begin{center}
# Line 22 | Line 20 | $N^{WZ}$                       &3.6 $\pm
20   \WZ from MC                     & 3             &4              &5              &9              &14             \\
21   \hline
22   \end{tabular}
23 < \\
23 > \\
24   \begin{tabular}{lccccc} \hline \hline
25   Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
26   Observed Number of Events       & 25            & 28            & 32            & 36            & 38\\          
# Line 50 | Line 48 | $N^{WZ}$                        &3.5 $\p
48   \WZ from MC                     &       2       &       3       &       7       &       11      &       14 \\
49   \hline
50   \end{tabular}
51 < \\
51 > \\
52   \begin{tabular}{lccccc} \hline \hline
53   Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
54   Observed Number of Events       &       21      &       23      &       27      &       27      &       29\\\hline
# Line 78 | Line 76 | $N^{WZ}$                        &2.4 $\p
76   \WZ from MC                     &       2       &       6       &       9       &       12      &       14 \\
77   \hline
78   \end{tabular}
79 < \\
79 > \\
80   \begin{tabular}{lccccc} \hline \hline
81   Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
82   Observed Number of Events       &       32      &       35      &       40      &       46      &       55 \\ \hline
# Line 106 | Line 104 | $N^{WZ}$                        &0.4 $\p
104   \WZ from MC                     &       1       &       1       &       4       &       6       &       8 \\
105   \hline
106   \end{tabular}
107 < \\
107 > \\
108   \begin{tabular}{lccccc} \hline \hline
109   Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
110   Observed Number of Events       &       10      &       14      &       18      &       22      &       24 \\ \hline
# Line 114 | Line 112 | $N$ - ZZ -Zgamma                &8.6 $\p
112   $N^{genuine Z}$ (matrix method) &2.4 $\pm$2.1   & 2.7 $\pm$2.4  & 2.7 $\pm$2.7  & 3.2 $\pm$3.1  & 3.4 $\pm$3.4\\ \hline
113   $N^{WZ}$                        &6.2 $\pm$2.5   & 9.7 $\pm$2.9  &13.4 $\pm$3.3  &16.7 $\pm$3.8   &18.2 $\pm$4.1\\\hline
114   \WZ from MC                     &       10      &       13      &       15      &       19      &       21\\
117 \hline\\
118 \end{tabular}
119 \caption{Expected number of selected events for an integrated luminosity from 100
120 pb$^{-1}$ to 1000 pb$^{-1}$ for 3$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
121 .}
122 \label{tab:Pseudo3mu}
123 \end{center}
124 \end{table}
125
126
127 Tables~\ref{tab:Pseudo3eFit}~\ref{tab:Pseudo2mu1eFit}~\ref{tab:Pseudo2e1muFit}~\ref{tab:Pseudo3muFit}
128 presents the event yield of pseudo experiment with this time but
129 separating out the background containing a non-genuine \Z.  The
130 residual errors coming from the fit are dominating the measurement
131 but all measurement are in perfect agreement.
132
133 \begin{table}[h]
134  \begin{center}
135 \begin{tabular}{lccccc} \hline \hline
136 Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
137 Observed Number of Events       & 10            & 17            & 23            \\ \hline
138 $N$ - ZZ -Zgamma                &8.6 $\pm$1.1   &15.1$\pm$1.4   &20.7 $\pm$1.8  \\
139 $N^{non genuine Z}$ (Fit)      &1.4 $\pm$3.0    & 1.5 $\pm$3.1  &2.6 $\pm$3.6   \\      
140 $N^{genuine Z}$ (matrix method) &2.8 $\pm$1.4   & 5.6 $\pm$2.4  & 7.0 $\pm$3.0  \\\hline
141 $N^{WZ}$                        &4.4 $\pm$3.5   & 8.1 $\pm$4.1  &11.1 $\pm$5.0  \\ \hline
142 \WZ from MC                     &5              &9              &14             \\
143 \hline
144 \end{tabular}
145 \\
146 \begin{tabular}{lccccc} \hline \hline
147 Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
148 Observed Number of Events       & 25            & 28            & 32            & 36            & 38\\          
149 $N$ - ZZ -Zgamma                &22.2 $\pm$2.2  &24.7 $\pm$2.5  &28.3 $\pm$2.9  &54.5 $\pm$3.5  &58.0 $\pm$3.9 \\
150 $N^{non genuine Z}$ (Fit)      & 2.8 $\pm$3.7   & 2.9 $\pm$3.6  & 3.5 $\pm$4.0  & 3.7 $\pm$4.1  & 4.4 $\pm$4.1 \\
151 $N^{genuine Z}$ (matrix method) & 7.4 $\pm$3.2  & 9.3 $\pm$3.7  & 9.3 $\pm$4.0  & 8.3 $\pm$4.2  &11.1 $\pm$4.7 \\\hline
152 $N^{WZ}$                        &12.0 $\pm$5.4  &12.6 $\pm$5.7  &15.5 $\pm$6.3  &19.8 $\pm$6.7  &17.8 $\pm$7.2 \\\hline
153 \WZ from MC                     &15             &18             &20             &23             &24\\
115   \hline
116   \end{tabular}
117   \caption{Expected number of selected events for an integrated luminosity from 100
157 pb$^{-1}$ to 1000 pb$^{-1}$ for 3e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
158 .}
159 \label{tab:Pseudo3eFit}
160 \end{center}
161 \end{table}
162
163 \begin{table}[h]
164  \begin{center}
165 \begin{tabular}{lccccc} \hline \hline
166 Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
167 Observed Number of Events       & 9             &12             &       18\\ \hline
168 $N$ - ZZ -Zgamma                &8.4 $\pm$0.6   &13.2 $\pm$0.8  &17.0 $\pm$1.0\\
169 $N^{non genuine Z}$ (Fit)       &0.6 $\pm$3.2   & 0.5 $\pm$0.9  &1.3$\pm$3.4\\
170 $N^{genuine Z}$ (matrix method) &0.5 $\pm$0.7   & 0.7 $\pm$1.0  &0.7 $\pm$1.2\\ \hline
171 $N^{WZ}$                        &7.3 $\pm$3.3   &12.1 $\pm$1.6  &15.0 $\pm$3.7\\ \hline
172 \WZ from MC                     &       7       &       11      &       14 \\
173 \hline
174 \end{tabular}
175 \\
176 \begin{tabular}{lccccc} \hline \hline
177 Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
178 Observed Number of Events       &       21      &       23      &       27      &       27      &       29\\\hline
179 $N$ - ZZ -Zgamma                &19.8 $\pm$1.2  &21.6 $\pm$1.4  &25.4 $\pm$1.6  &25.2 $\pm$1.8  &27.0 $\pm$2.0\\
180 $N^{non genuine Z}$ (Fit)      & 1.2 $\pm$3.2   & 1.7 $\pm$3.4  & 2.5 $\pm$3.7  & 2.6 $\pm$3.7  & 2.8 $\pm$3.8\\
181 $N^{genuine Z}$ (matrix method) &0.6 $\pm$1.3   & 0.7 $\pm$1.4  & 1.0 $\pm$1.7  & 1.1 $\pm$1.8  & 1.6 $\pm$2.2\\\hline  
182 $N^{WZ}$                        &18.0 $\pm$3.6  &19.2 $\pm$3.9  &21.9 $\pm$4.4  &21.4 $\pm$4.5  &22.7 $\pm$4.9 \\ \hline
183 \WZ from MC                     &       16      &       18      &       22      &       22      &       24\\
184 \hline\\
185 \end{tabular}
186 \caption{Expected number of selected events for an integrated luminosity from 100
187 pb$^{-1}$ to 1000 pb$^{-1}$ for 2e1$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
188 .}
189 \label{tab:Pseudo2e1muFit}
190 \end{center}
191 \end{table}
192
193 \begin{table}[h]
194  \begin{center}
195 \begin{tabular}{lccccc} \hline \hline
196 Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
197 Observed Number of Events       &17             &       21      &       25 \\ \hline
198 $N$ - ZZ -Zgamma                &16.3$\pm$0.7   &20.1 $\pm$0.9  &23.8 $\pm$1.2\\
199 $N^{non genuine Z}$ (Fit)      & 0.7 $\pm$2.9   & 1.2 $\pm$1.0  & 1.6 $\pm$4.2\\
200 $N^{genuine Z}$ (matrix method) & 6.0 $\pm$2.5  & 7.9 $\pm$3.1  & 7.4 $\pm$3.5\\\hline
201 $N^{WZ}$                        &9.6 $\pm$3.9   &10.9 $\pm$3.4  &14.8 $\pm$5.5 \\\hline
202 \WZ from MC                     &       9       &       12      &       14 \\
203 \hline
204 \end{tabular}
205 \\
206 \begin{tabular}{lccccc} \hline \hline
207 Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
208 Observed Number of Events       &       32      &       35      &       40      &       46      &       55 \\ \hline
209 $N$ - ZZ -Zgamma                &30.6 $\pm$1.4  &33.4 $\pm$1.6  &38.1 $\pm$1.9  &43.9 $\pm$2.1  &52.7 $\pm$2.3 \\
210 $N^{non genuine Z}$ (Fit)      & 2.3 $\pm$1.2   & 2.4 $\pm$1.2  & 3.6 $\pm$3.9  & 3.8 $\pm$3.8  & 4.0 $\pm$3.9\\
211 $N^{genuine Z}$ (matrix method) &10.2 $\pm$4.4  &10.6 $\pm$4.8  &12.5 $\pm$5.4  &12.9 $\pm$6.0  &14.3 $\pm$7.0  \\\hline
212 $N^{WZ}$                        &18.2 $\pm$4.7  &20.6 $\pm$5.1  &22.0 $\pm$6.9  &27.2 $\pm$7.4  &34.4 $\pm$8.3 \\\hline
213 \WZ from MC                     &       19      &       22      &       26      &       29      &       32\\
214 \hline\\
215 \end{tabular}
216 \caption{Expected number of selected events for an integrated luminosity from 100
217 pb$^{-1}$ to 1000 pb$^{-1}$ for 2$\mu$1e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
218 .}
219 \label{tab:Pseudo2mu1eFit}
220 \end{center}
221 \end{table}
222
223 \begin{table}[h]
224  \begin{center}
225 \begin{tabular}{lccc} \hline \hline
226 Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
227 Observed Number of Events       &       4       &       6       &       8 \\ \hline
228 $N$ - ZZ -Zgamma                &3.3 $\pm$0.7   &5.1 $\pm$0.9   &6.8 $\pm$1.2\\
229 $N^{non genuine Z}$ (Fit)       &0.4 $\pm$0.2   &0.3 $\pm$0.8   &1.2 $\pm$3.6\\
230 $N^{genuine Z}$ (matrix method) &0.7 $\pm$0.6   &1.1 $\pm$1.0   &1.7 $\pm$1.4\\ \hline
231 $N^{WZ}$                        &2.2 $\pm$0.9   &3.6 $\pm$1.6   &4.0 $\pm$4.1\\ \hline
232 \WZ from MC                     &       4       &       6       &       8 \\
233 \hline
234 \end{tabular}
235 \\
236 \begin{tabular}{lccccc} \hline \hline
237 Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
238 Observed Number of Events       &       10      &       14      &       18      &       22      &       24 \\ \hline
239 $N$ - ZZ -Zgamma                &8.6 $\pm$1.4   &12.3 $\pm$1.6  &16.1 $\pm$1.9  &19.9 $\pm$2.1  &21.7 $\pm$2.3\\
240 $N^{non genuine Z}$ (Fit)       &1.3 $\pm$3.0   & 1.2 $\pm$3.7  & 1.5 $\pm$3.1  & 1.3 $\pm$3.8  & 1.2 $\pm$3.0\\
241 $N^{genuine Z}$ (matrix method) &2.0 $\pm$1.8   & 2.3 $\pm$2.1  & 2.4 $\pm$2.4  & 2.7 $\pm$2.8  & 2.9 $\pm$3.0\\ \hline
242 $N^{WZ}$                        &5.3 $\pm$3.8   & 8.8 $\pm$4.5  &12.2 $\pm$4.3  &15.9 $\pm$5.1  &17.5 $\pm$4.8\\\hline
243 \WZ from MC                     &       10      &       13      &       15      &       19      &       21\\
244 \hline\\
245 \end{tabular}
246 \caption{Expected number of selected events for an integrated luminosity from 100
118   pb$^{-1}$ to 1000 pb$^{-1}$ for 3$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
119   .}
120 < \label{tab:Pseudo3muFit}
120 > \label{tab:Pseudo3mu}
121   \end{center}
122   \end{table}
123  
124 < Unfortunately, the statistics in all samples do not allow us to
254 < perform proper pseudo experiment:
124 > Unfortunately, the statistics in all samples do not allow us to perform proper pseudo-experiments:
125   \begin{itemize}
126 < \item \W + 0 jets as a statistics below 100pb$^{-1}$, nevertheless we
127 < do not expect to have so much events after the full selection been applied.
128 < \item at 600 pb$^{-1}$, 12\% of W+3jet, 0$<$phat$<$100 GeV are missing to complete
129 < the sample. Once again, this production is not so much expected to contribute directly
130 < to the final state studied.
131 < \item at 700 pb$^{-1}$, 6\% of W+5jet 0$<$phat$<$100 are missing to complete the sample.
132 < \item at 700 pb$^{-1}$, 8\% of \Z + 0 jet are missing. This is not a major background
133 < for the analysis.
134 < \item at 900 pb$^{-1}$, a statistics of 6\% and 7\% \W +1jet 100$<$phat$<$300 and \W+2jets 100$<$phat$<$300
135 < respectively are missing.
136 < \item at 1 fb$^{-1}$, mainly all \W +jets samples are missing statistics.
137 < This samples are not fondammental as the efficiency is really low for this background.
138 < But 9\% of \Z+1jet 0$<$phat$<$100, 10\% of \Z+2jets 0$<$phat$<$100 and 2\% of \Z+3jets 0$<$phat$<$100
269 < cannot be included in the event yield. This can be a problem and the results at 1fb$^{-1}$ should be
270 < taken with care.
126 > \item \W + 0 jets is generated for the statistics below 100 pb$^{-1}$, nevertheless we
127 > do not expect to have so much events after the full selection is applied.
128 > \item at 600 pb$^{-1}$, 12\% of \W + 3 jet, 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate. Once again,
129 > this production is not so much expected to contribute directly to the final state studied.
130 > \item at 700 pb$^{-1}$, 6\% of \W + 5 jet 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate.
131 > \item at 700 pb$^{-1}$, 8\% of \Z + 0 jet is missing to make a valid estimate. This is not a major background
132 > for the analysis, see note above.
133 > \item at 900 pb$^{-1}$, 6\% and 7\% \W + 1 jet 100 $<\hat{p}<$ 300 and \W + 2 jets 100 $<\hat{p}<$ 300, respectively
134 > are missing to make a valid estimation.
135 > \item at 1 fb$^{-1}$, mainly all \W + jets have insufficient statistics to make a valid pseudo-experiment.
136 > These samples are not fundamental as the contribution of this process to \WZ final state is very small.
137 > However, 9\% of \Z + 1 jet 0$<\hat{p}<$100, 10\% of \Z + 2 jets 0$<\hat{p}<$100 and 2\% of \Z + 3 jets 0$<\hat{p}<$100
138 > cannot be included in the event yield. This can be a problem and the results at 1 \invfb should not be trusted.
139   \end{itemize}
140  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines