ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/AppendixPseudoExp.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/AppendixPseudoExp.tex (file contents):
Revision 1.1 by beaucero, Fri Aug 1 23:22:16 2008 UTC vs.
Revision 1.3 by beaucero, Tue Aug 12 19:54:14 2008 UTC

# Line 1 | Line 1
1   \newpage
2   \clearpage
3 < \section{Cross-checks using Pseudo Experiment}
3 > \section{Cross-checks using pseudo-experiments}
4  
5 < The statistics of Chowder soup should correspond to 1fb$^{-1}$ of data
6 < taking, so 10 pseudo experiment have been done by steps of
7 < 100pb$^{-1}$. In
8 < table~\ref{tab:Pseudo3e}~\ref{tab:Pseudo2e1mu}~\ref{tab:Pseudo2mu1e}~\ref{tab:Pseudo3mu},
9 < the event yield for each steps of luminosity is given respectively for
10 < each channel. The non-genuine \Z background is not considered as a
11 < separate background and it is included in the Matrix Method. The
12 < results are in agreement within one sigma.
5 > The statistics of Chowder soup should correspond to 1 \invfb of integrated luminosity.
6 > Thus, in this Section we perform 10 pseudo experiments with a step of 100 \invpb each. In
7 > Tables~\ref{tab:Pseudo3e}, \ref{tab:Pseudo2e1mu}, \ref{tab:Pseudo2mu1e}, and \ref{tab:Pseudo3mu}
8 > the measured event yield is given for every signature channel as function of the integrated
9 > luminosity. The uncertainties are systematic uncertainties associated with the background
10 > estimation method only. The results agree with Monte Carlo truth information within one sigma.
11  
12   \begin{table}[h]
13    \begin{center}
14   \begin{tabular}{lccccc} \hline \hline
15 < Luminosity (pb$^{-1}$)          & 100           & 200           &300            &400            & 500           \\ \hline
16 < Observed Number of Events       & 5             &8              & 10            & 17            & 23            \\
17 < $N$ - ZZ -Zgamma               &4.5 $\pm$0.4    &7.1 $\pm$0.7   &8.6 $\pm$1.1   &15.1$\pm$1.4   &20.7 $\pm$1.8  \\
18 < $N^{genuine Z}$ (matrix method)&0.9 $\pm$0.6    &1.8 $\pm$1.0   &3.2 $\pm$1.4   & 5.6 $\pm$2.4  & 7.4 $\pm$3.2  \\ \hline
19 < $N^{WZ}$                       &3.6 $\pm$0.7    &5.2 $\pm$1.3   &5.4 $\pm$1.8   & 9.6 $\pm$2.8  &13.3 $\pm$3.7  \\ \hline
20 < \WZ from MC                     & 3             &4              &5              &9              &14             \\
15 > Luminosity (pb$^{-1}$)                  & 100           & 200           &300            &400            & 500           \\ \hline
16 > Observed Number of Events               & 5             &8              & 10            & 17            & 23            \\
17 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&4.2 $\pm$0.4 &6.4 $\pm$0.9   &7.6 $\pm$1.3   &13.8$\pm$1.7   &19.0 $\pm$2.6  \\
18 > $N^{genuine Z}$ (matrix method)         &0.9 $\pm$0.6   &1.8 $\pm$1.0   &3.3 $\pm$1.4   & 5.6 $\pm$2.4  & 7.0 $\pm$3.1  \\ \hline
19 > $N^{WZ}$                                &3.3 $\pm$0.8   &4.6 $\pm$1.3   &4.4 $\pm$1.9   & 8.2 $\pm$2.9  &12.1 $\pm$3.8  \\ \hline
20 > \WZ from MC                             & 3             &4              &5              &9              &14             \\
21   \hline
22   \end{tabular}
23 < \\
23 > \\
24   \begin{tabular}{lccccc} \hline \hline
25 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
26 < Observed Number of Events       & 25            & 28            & 32            & 36            & 38\\          
27 < $N$ - ZZ -Zgamma                &22.2 $\pm$2.2  &24.7 $\pm$2.5  &28.3 $\pm$2.9  &54.5 $\pm$3.5  &58.0 $\pm$3.9 \\
28 < $N^{genuine Z}$ (matrix method) & 7.9 $\pm$3.5  & 9.7 $\pm$4.0  & 9.7 $\pm$4.4  &33.2 $\pm$7.4  &36.1 $\pm$8.2\\\hline
29 < $N^{WZ}$                        &14.3 $\pm$4.1  &15.0 $\pm$4.7  &18.6 $\pm$5.2  &21.3 $\pm$8.2  &21.9 $\pm$9.1\\\hline
30 < \WZ from MC                     &15             &18             &20             &23             &24\\
25 > Luminosity (pb$^{-1}$)                  &600            &700            & 800           & 900           & 1000 \\ \hline
26 > Observed Number of Events               & 25            & 28            & 32            & 36            & 38\\          
27 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&20.2 $\pm$2.6 &22.4 $\pm$3.0 &25.6 $\pm$3.5  &28.8 $\pm$3.9  &30.0 $\pm$4.3 \\
28 > $N^{genuine Z}$ (matrix method)         & 7.4 $\pm$3.3  & 9.3 $\pm$3.8  & 9.3 $\pm$4.0  &10.2 $\pm$4.5  &10.6 $\pm$4.8\\\hline
29 > $N^{WZ}$                                &12.8 $\pm$4.2  &13.1 $\pm$4.8  &16.3 $\pm$5.3  &18.6 $\pm$5.9  &19.4 $\pm$6.4\\\hline
30 > \WZ from MC                             &15             &18             &20             &23             &24\\
31   \hline
32   \end{tabular}
33   \caption{Expected number of selected events for an integrated luminosity from 100
# Line 42 | Line 40 | $N^{WZ}$                        &14.3 $\
40   \begin{table}[h]
41    \begin{center}
42   \begin{tabular}{lccccc} \hline \hline
43 < Luminosity (pb$^{-1}$)          & 100           & 200           &300            &400            & 500           \\ \hline
44 < Observed Number of Events       & 4             & 5             & 9             &12             &       18\\ \hline
45 < $N$ - ZZ -Zgamma                &3.8 $\pm$0.2   &4.6 $\pm$0.4   &8.4 $\pm$0.6   &13.2 $\pm$0.8  &17.0 $\pm$1.0\\
46 < $N^{genuine Z}$ (matrix method) &0.3 $\pm$0.3   &0.6 $\pm$0.6   &0.8 $\pm$0.9   & 1.1 $\pm$1.4  & 1.1 $\pm$1.6\\\hline
47 < $N^{WZ}$                        &3.5 $\pm$0.4   &4.0 $\pm$0.7   &7.6 $\pm$1.1   &12.1 $\pm$1.6  &15.9 $\pm$1.9 \\\hline
48 < \WZ from MC                     &       2       &       3       &       7       &       11      &       14 \\
49 < \hline
50 < \end{tabular}
51 < \\
52 < \begin{tabular}{lccccc} \hline \hline
53 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
54 < Observed Number of Events       &       21      &       23      &       27      &       27      &       29\\\hline
55 < $N$ - ZZ -Zgamma                &19.8 $\pm$1.2  &21.6 $\pm$1.4  &25.4 $\pm$1.6  &25.2 $\pm$1.8  &27.0 $\pm$2.0\\
56 < $N^{genuine Z}$ (matrix method) &1.3 $\pm$1.8   & 1.5 $\pm$2.0  & 1.9 $\pm$2.5  & 2.1 $\pm$2.6  & 2.6 $\pm$3.1\\\hline
57 < $N^{WZ}$                        &18.5 $\pm$2.1  &20.1 $\pm$2.5  &23.5 $\pm$3.0  &23.1 $\pm$3.2  &24.4 $\pm$3.7\\\hline
58 < \WZ from MC                     &       16      &       18      &       22      &       22      &       24\\
43 > Luminosity (pb$^{-1}$)                  & 100           & 200           &300            &400            & 500           \\ \hline
44 > Observed Number of Events               & 4             & 5             & 9             &12             &       18\\ \hline
45 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&3.6 $\pm$0.3 &4.2 $\pm$0.6   &7.8 $\pm$0.8   &12.4 $\pm$1.1  &16.0 $\pm$1.4\\
46 > $N^{genuine Z}$ (matrix method)         &0.1 $\pm$0.2   &0.4 $\pm$0.5   &0.5 $\pm$0.7   & 0.6 $\pm$1.0  & 0.6 $\pm$1.1\\\hline
47 > $N^{WZ}$                                &3.5 $\pm$0.4   &3.8 $\pm$0.7   &7.3 $\pm$1.1   & 11.8 $\pm$1.5 &15.4 $\pm$1.8 \\\hline
48 > \WZ from MC                             &       2       &       3       &       7       &       11      &       14 \\
49 > \hline
50 > \end{tabular}
51 > \\
52 > \begin{tabular}{lccccc} \hline \hline
53 > Luminosity (pb$^{-1}$)                  &600            &700            & 800           & 900           & 1000 \\ \hline
54 > Observed Number of Events               &       21      &       23      &       27      &       27      &       29\\\hline
55 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&18.6 $\pm$1.7&20.2 $\pm$2.0  &23.8 $\pm$2.3  &23.4 $\pm$2.5  &25.0 $\pm$2.8\\
56 > $N^{genuine Z}$ (matrix method)         &0.6 $\pm$1.2   & 0.6 $\pm$1.4  & 1.0 $\pm$1.8  & 1.1 $\pm$1.8  & 1.4 $\pm$2.2\\\hline
57 > $N^{WZ}$                                &18.0 $\pm$2.1  &19.6 $\pm$2.4  &22.8 $\pm$2.9  &22.3 $\pm$3.1  &23.6 $\pm$3.6\\\hline
58 > \WZ from MC                             &       16      &       18      &       22      &       22      &       24\\
59   \hline\\
60   \end{tabular}
61   \caption{Expected number of selected events for an integrated luminosity from 100
# Line 70 | Line 68 | $N^{WZ}$                        &18.5 $\
68   \begin{table}[h]
69    \begin{center}
70   \begin{tabular}{lccccc} \hline \hline
71 < Luminosity (pb$^{-1}$)          & 100           & 200           &300            &400            & 500           \\ \hline
72 < Observed Number of Events       & 4             &       13      &17             &       21      &       25 \\ \hline
73 < $N$ - ZZ -Zgamma                &4.8 $\pm$0.2   &12.5 $\pm$0.5  &16.3$\pm$0.7   &20.1 $\pm$0.9  &23.8 $\pm$1.2\\
74 < $N^{genuine Z}$ (matrix method) &2.3 $\pm$0.8   & 5.1 $\pm$2.0  & 6.0 $\pm$2.6  & 7.4 $\pm$3.2  & 7.9 $\pm$3.5\\\hline
75 < $N^{WZ}$                        &2.4 $\pm$0.9   & 7.4 $\pm$2.1  &10.3 $\pm$2.7  &12.7$\pm$3.3   &16.0 $\pm$3.7\\ \hline
76 < \WZ from MC                     &       2       &       6       &       9       &       12      &       14 \\
77 < \hline
78 < \end{tabular}
79 < \\
80 < \begin{tabular}{lccccc} \hline \hline
81 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
82 < Observed Number of Events       &       32      &       35      &       40      &       46      &       55 \\ \hline
83 < $N$ - ZZ -Zgamma                &30.6 $\pm$1.4  &33.4 $\pm$1.6  &38.1 $\pm$1.9  &43.9 $\pm$2.1  &52.7 $\pm$2.3 \\
84 < $N^{genuine Z}$ (matrix method) &10.6 $\pm$4.7  &11.1 $\pm$5.0  &12.5 $\pm$5.7  &13.8 $\pm$6.4  &15.2 $\pm$7.4 \\ \hline
85 < $N^{WZ}$                        &20.0 $\pm$4.9  &22.3 $\pm$5.3  &25.7 $\pm$6.0  &30.1 $\pm$6.7  &37.5 $\pm$7.8 \\ \hline
86 < \WZ from MC                     &       19      &       22      &       26      &       29      &       32\\
71 > Luminosity (pb$^{-1}$)                  & 100           & 200           &300            &400            & 500           \\ \hline
72 > Observed Number of Events               & 4             &       13      &17             &       21      &       25 \\ \hline
73 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&4.6 $\pm$0.3 &12.1 $\pm$0.6  &15.7$\pm$0.9   &19.3 $\pm$1.2  &22.8 $\pm$1.5\\
74 > $N^{genuine Z}$ (matrix method)         &2.3 $\pm$0.8   & 4.6 $\pm$2.0  & 6.0 $\pm$2.5  & 7.4 $\pm$3.1  & 7.9 $\pm$3.5\\\hline
75 > $N^{WZ}$                                &2.2 $\pm$0.9   & 7.5 $\pm$2.1  &9.7 $\pm$2.7   &11.8$\pm$3.3   &15.0 $\pm$3.8\\ \hline
76 > \WZ from MC                             &       2       &       6       &       9       &       12      &       14 \\
77 > \hline
78 > \end{tabular}
79 > \\
80 > \begin{tabular}{lccccc} \hline \hline
81 > Luminosity (pb$^{-1}$)                  &600            &700            & 800           & 900           & 1000 \\ \hline
82 > Observed Number of Events               &       32      &       35      &       40      &       46      &       55 \\ \hline
83 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&29.4 $\pm$1.8&32.0 $\pm$2.2  &36.5 $\pm$2.5  &42.1 $\pm$2.8  &50.7 $\pm$3.1 \\
84 > $N^{genuine Z}$ (matrix method)         &10.2 $\pm$4.5  &11.6 $\pm$5.0  &12.5 $\pm$5.6  &12.9 $\pm$6.2  &14.7 $\pm$7.2 \\ \hline
85 > $N^{WZ}$                                &19.2 $\pm$4.9  &20.4 $\pm$5.4  &24.1 $\pm$6.1  &29.2 $\pm$6.8  &35.9 $\pm$7.8 \\ \hline
86 > \WZ from MC                             &       19      &       22      &       26      &       29      &       32\\
87   \hline\\
88   \end{tabular}
89   \caption{Expected number of selected events for an integrated luminosity from 100
# Line 98 | Line 96 | $N^{WZ}$                        &20.0 $\
96   \begin{table}[h]
97    \begin{center}
98   \begin{tabular}{lccccc} \hline \hline
99 < Luminosity (pb$^{-1}$)          & 100           & 200           &300            &400            & 500           \\ \hline
100 < Observed Number of Events       & 1             &       1       &       4       &       6       &       8 \\ \hline
101 < $N$ - ZZ -Zgamma                &0.8 $\pm$0.2   &0.5 $\pm$0.5   &3.3 $\pm$0.7   &5.1 $\pm$0.9   &6.8 $\pm$1.2\\
102 < $N^{genuine Z}$ (matrix method) &0.3 $\pm$0.2   &0.6 $\pm$0.5   &0.9 $\pm$0.8   &1.2 $\pm$1.1   &1.9 $\pm$1.6\\\hline
103 < $N^{WZ}$                        &0.4 $\pm$0.3   &-0.1$\pm$0.7   &2.4 $\pm$1.0   &3.8 $\pm$1.5   &4.9 $\pm$2.0\\ \hline
104 < \WZ from MC                     &       1       &       1       &       4       &       6       &       8 \\
99 > Luminosity (pb$^{-1}$)                  & 100           & 200           &300            &400            & 500           \\ \hline
100 > Observed Number of Events               & 1             &       1       &       4       &       6       &       8 \\ \hline
101 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&0.7 $\pm$0.3 &0.3 $\pm$0.5   &3.0 $\pm$0.8   &4.7 $\pm$1.0   &6.3 $\pm$1.3\\
102 > $N^{genuine Z}$ (matrix method)         &0.2 $\pm$0.2   &0.3 $\pm$0.3   &0.5 $\pm$0.5   &0.9 $\pm$0.8   &1.3 $\pm$1.2\\\hline
103 > $N^{WZ}$                                &0.5 $\pm$0.3   &-0.1$\pm$0.6   &2.5 $\pm$0.9   &3.8 $\pm$1.3   &5.1 $\pm$1.7\\ \hline
104 > \WZ from MC                             &       1       &       1       &       4       &       6       &       8 \\
105 > \hline
106 > \end{tabular}
107 > \\
108 > \begin{tabular}{lccccc} \hline \hline
109 > Luminosity (pb$^{-1}$)                  &600            &700            & 800           & 900           & 1000 \\ \hline
110 > Observed Number of Events               &       10      &       14      &       18      &       22      &       24 \\ \hline
111 > $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$&8.0 $\pm$1.5 &11.7 $\pm$1.8  &15.3 $\pm$2.0  &19.0 $\pm$2.3  &20.7 $\pm$2.5\\
112 > $N^{genuine Z}$ (matrix method)         &1.7 $\pm$1.6   & 1.8 $\pm$1.8  & 1.8 $\pm$2.0  & 2.0 $\pm$2.3  & 2.2 $\pm$2.5\\ \hline
113 > $N^{WZ}$                                &6.3 $\pm$2.2   & 9.8 $\pm$2.5  &13.5 $\pm$2.8  &17.0 $\pm$3.3   &18.5 $\pm$3.6\\\hline
114 > \WZ from MC                             &       10      &       13      &       15      &       19      &       21\\
115   \hline
116   \end{tabular}
109 \\
110 \begin{tabular}{lccccc} \hline \hline
111 Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
112 Observed Number of Events       &       10      &       14      &       18      &       22      &       24 \\ \hline
113 $N$ - ZZ -Zgamma                &8.6 $\pm$1.4   &12.3 $\pm$1.6  &16.1 $\pm$1.9  &19.9 $\pm$2.1  &21.7 $\pm$2.3\\
114 $N^{genuine Z}$ (matrix method) &2.4 $\pm$2.1   & 2.7 $\pm$2.4  & 2.7 $\pm$2.7  & 3.2 $\pm$3.1  & 3.4 $\pm$3.4\\ \hline
115 $N^{WZ}$                        &6.2 $\pm$2.5   & 9.7 $\pm$2.9  &13.4 $\pm$3.3  &16.7 $\pm$3.8   &18.2 $\pm$4.1\\\hline
116 \WZ from MC                     &       10      &       13      &       15      &       19      &       21\\
117 \hline\\
118 \end{tabular}
117   \caption{Expected number of selected events for an integrated luminosity from 100
118   pb$^{-1}$ to 1000 pb$^{-1}$ for 3$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
119   .}
# Line 123 | Line 121 | $N^{WZ}$                        &6.2 $\p
121   \end{center}
122   \end{table}
123  
124 <
127 < Tables~\ref{tab:Pseudo3eFit}~\ref{tab:Pseudo2mu1eFit}~\ref{tab:Pseudo2e1muFit}~\ref{tab:Pseudo3muFit}
128 < presents the event yield of pseudo experiment with this time but
129 < separating out the background containing a non-genuine \Z.  The
130 < residual errors coming from the fit are dominating the measurement
131 < but all measurement are in perfect agreement.
132 <
133 < \begin{table}[h]
134 <  \begin{center}
135 < \begin{tabular}{lccccc} \hline \hline
136 < Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
137 < Observed Number of Events       & 10            & 17            & 23            \\ \hline
138 < $N$ - ZZ -Zgamma                &8.6 $\pm$1.1   &15.1$\pm$1.4   &20.7 $\pm$1.8  \\
139 < $N^{non genuine Z}$ (Fit)      &1.4 $\pm$3.0    & 1.5 $\pm$3.1  &2.6 $\pm$3.6   \\      
140 < $N^{genuine Z}$ (matrix method) &2.8 $\pm$1.4   & 5.6 $\pm$2.4  & 7.0 $\pm$3.0  \\\hline
141 < $N^{WZ}$                        &4.4 $\pm$3.5   & 8.1 $\pm$4.1  &11.1 $\pm$5.0  \\ \hline
142 < \WZ from MC                     &5              &9              &14             \\
143 < \hline
144 < \end{tabular}
145 < \\
146 < \begin{tabular}{lccccc} \hline \hline
147 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
148 < Observed Number of Events       & 25            & 28            & 32            & 36            & 38\\          
149 < $N$ - ZZ -Zgamma                &22.2 $\pm$2.2  &24.7 $\pm$2.5  &28.3 $\pm$2.9  &54.5 $\pm$3.5  &58.0 $\pm$3.9 \\
150 < $N^{non genuine Z}$ (Fit)      & 2.8 $\pm$3.7   & 2.9 $\pm$3.6  & 3.5 $\pm$4.0  & 3.7 $\pm$4.1  & 4.4 $\pm$4.1 \\
151 < $N^{genuine Z}$ (matrix method) & 7.4 $\pm$3.2  & 9.3 $\pm$3.7  & 9.3 $\pm$4.0  & 8.3 $\pm$4.2  &11.1 $\pm$4.7 \\\hline
152 < $N^{WZ}$                        &12.0 $\pm$5.4  &12.6 $\pm$5.7  &15.5 $\pm$6.3  &19.8 $\pm$6.7  &17.8 $\pm$7.2 \\\hline
153 < \WZ from MC                     &15             &18             &20             &23             &24\\
154 < \hline
155 < \end{tabular}
156 < \caption{Expected number of selected events for an integrated luminosity from 100
157 < pb$^{-1}$ to 1000 pb$^{-1}$ for 3e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
158 < .}
159 < \label{tab:Pseudo3eFit}
160 < \end{center}
161 < \end{table}
162 <
163 < \begin{table}[h]
164 <  \begin{center}
165 < \begin{tabular}{lccccc} \hline \hline
166 < Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
167 < Observed Number of Events       & 9             &12             &       18\\ \hline
168 < $N$ - ZZ -Zgamma                &8.4 $\pm$0.6   &13.2 $\pm$0.8  &17.0 $\pm$1.0\\
169 < $N^{non genuine Z}$ (Fit)       &0.6 $\pm$3.2   & 0.5 $\pm$0.9  &1.3$\pm$3.4\\
170 < $N^{genuine Z}$ (matrix method) &0.5 $\pm$0.7   & 0.7 $\pm$1.0  &0.7 $\pm$1.2\\ \hline
171 < $N^{WZ}$                        &7.3 $\pm$3.3   &12.1 $\pm$1.6  &15.0 $\pm$3.7\\ \hline
172 < \WZ from MC                     &       7       &       11      &       14 \\
173 < \hline
174 < \end{tabular}
175 < \\
176 < \begin{tabular}{lccccc} \hline \hline
177 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
178 < Observed Number of Events       &       21      &       23      &       27      &       27      &       29\\\hline
179 < $N$ - ZZ -Zgamma                &19.8 $\pm$1.2  &21.6 $\pm$1.4  &25.4 $\pm$1.6  &25.2 $\pm$1.8  &27.0 $\pm$2.0\\
180 < $N^{non genuine Z}$ (Fit)      & 1.2 $\pm$3.2   & 1.7 $\pm$3.4  & 2.5 $\pm$3.7  & 2.6 $\pm$3.7  & 2.8 $\pm$3.8\\
181 < $N^{genuine Z}$ (matrix method) &0.6 $\pm$1.3   & 0.7 $\pm$1.4  & 1.0 $\pm$1.7  & 1.1 $\pm$1.8  & 1.6 $\pm$2.2\\\hline  
182 < $N^{WZ}$                        &18.0 $\pm$3.6  &19.2 $\pm$3.9  &21.9 $\pm$4.4  &21.4 $\pm$4.5  &22.7 $\pm$4.9 \\ \hline
183 < \WZ from MC                     &       16      &       18      &       22      &       22      &       24\\
184 < \hline\\
185 < \end{tabular}
186 < \caption{Expected number of selected events for an integrated luminosity from 100
187 < pb$^{-1}$ to 1000 pb$^{-1}$ for 2e1$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
188 < .}
189 < \label{tab:Pseudo2e1muFit}
190 < \end{center}
191 < \end{table}
192 <
193 < \begin{table}[h]
194 <  \begin{center}
195 < \begin{tabular}{lccccc} \hline \hline
196 < Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
197 < Observed Number of Events       &17             &       21      &       25 \\ \hline
198 < $N$ - ZZ -Zgamma                &16.3$\pm$0.7   &20.1 $\pm$0.9  &23.8 $\pm$1.2\\
199 < $N^{non genuine Z}$ (Fit)      & 0.7 $\pm$2.9   & 1.2 $\pm$1.0  & 1.6 $\pm$4.2\\
200 < $N^{genuine Z}$ (matrix method) & 6.0 $\pm$2.5  & 7.9 $\pm$3.1  & 7.4 $\pm$3.5\\\hline
201 < $N^{WZ}$                        &9.6 $\pm$3.9   &10.9 $\pm$3.4  &14.8 $\pm$5.5 \\\hline
202 < \WZ from MC                     &       9       &       12      &       14 \\
203 < \hline
204 < \end{tabular}
205 < \\
206 < \begin{tabular}{lccccc} \hline \hline
207 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
208 < Observed Number of Events       &       32      &       35      &       40      &       46      &       55 \\ \hline
209 < $N$ - ZZ -Zgamma                &30.6 $\pm$1.4  &33.4 $\pm$1.6  &38.1 $\pm$1.9  &43.9 $\pm$2.1  &52.7 $\pm$2.3 \\
210 < $N^{non genuine Z}$ (Fit)      & 2.3 $\pm$1.2   & 2.4 $\pm$1.2  & 3.6 $\pm$3.9  & 3.8 $\pm$3.8  & 4.0 $\pm$3.9\\
211 < $N^{genuine Z}$ (matrix method) &10.2 $\pm$4.4  &10.6 $\pm$4.8  &12.5 $\pm$5.4  &12.9 $\pm$6.0  &14.3 $\pm$7.0  \\\hline
212 < $N^{WZ}$                        &18.2 $\pm$4.7  &20.6 $\pm$5.1  &22.0 $\pm$6.9  &27.2 $\pm$7.4  &34.4 $\pm$8.3 \\\hline
213 < \WZ from MC                     &       19      &       22      &       26      &       29      &       32\\
214 < \hline\\
215 < \end{tabular}
216 < \caption{Expected number of selected events for an integrated luminosity from 100
217 < pb$^{-1}$ to 1000 pb$^{-1}$ for 2$\mu$1e-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
218 < .}
219 < \label{tab:Pseudo2mu1eFit}
220 < \end{center}
221 < \end{table}
222 <
223 < \begin{table}[h]
224 <  \begin{center}
225 < \begin{tabular}{lccc} \hline \hline
226 < Luminosity (pb$^{-1}$)          &300            &400            & 500           \\ \hline
227 < Observed Number of Events       &       4       &       6       &       8 \\ \hline
228 < $N$ - ZZ -Zgamma                &3.3 $\pm$0.7   &5.1 $\pm$0.9   &6.8 $\pm$1.2\\
229 < $N^{non genuine Z}$ (Fit)       &0.4 $\pm$0.2   &0.3 $\pm$0.8   &1.2 $\pm$3.6\\
230 < $N^{genuine Z}$ (matrix method) &0.7 $\pm$0.6   &1.1 $\pm$1.0   &1.7 $\pm$1.4\\ \hline
231 < $N^{WZ}$                        &2.2 $\pm$0.9   &3.6 $\pm$1.6   &4.0 $\pm$4.1\\ \hline
232 < \WZ from MC                     &       4       &       6       &       8 \\
233 < \hline
234 < \end{tabular}
235 < \\
236 < \begin{tabular}{lccccc} \hline \hline
237 < Luminosity (pb$^{-1}$)          &600            &700            & 800           & 900           & 1000 \\ \hline
238 < Observed Number of Events       &       10      &       14      &       18      &       22      &       24 \\ \hline
239 < $N$ - ZZ -Zgamma                &8.6 $\pm$1.4   &12.3 $\pm$1.6  &16.1 $\pm$1.9  &19.9 $\pm$2.1  &21.7 $\pm$2.3\\
240 < $N^{non genuine Z}$ (Fit)       &1.3 $\pm$3.0   & 1.2 $\pm$3.7  & 1.5 $\pm$3.1  & 1.3 $\pm$3.8  & 1.2 $\pm$3.0\\
241 < $N^{genuine Z}$ (matrix method) &2.0 $\pm$1.8   & 2.3 $\pm$2.1  & 2.4 $\pm$2.4  & 2.7 $\pm$2.8  & 2.9 $\pm$3.0\\ \hline
242 < $N^{WZ}$                        &5.3 $\pm$3.8   & 8.8 $\pm$4.5  &12.2 $\pm$4.3  &15.9 $\pm$5.1  &17.5 $\pm$4.8\\\hline
243 < \WZ from MC                     &       10      &       13      &       15      &       19      &       21\\
244 < \hline\\
245 < \end{tabular}
246 < \caption{Expected number of selected events for an integrated luminosity from 100
247 < pb$^{-1}$ to 1000 pb$^{-1}$ for 3$\mu$-channel and estimated background with 81 GeV $< M_Z < $ 101 GeV
248 < .}
249 < \label{tab:Pseudo3muFit}
250 < \end{center}
251 < \end{table}
252 <
253 < Unfortunately, the statistics in all samples do not allow us to
254 < perform proper pseudo experiment:
124 > Unfortunately, the statistics in all samples do not allow us to perform proper pseudo-experiments:
125   \begin{itemize}
126 < \item \W + 0 jets as a statistics below 100pb$^{-1}$, nevertheless we
127 < do not expect to have so much events after the full selection been applied.
128 < \item at 600 pb$^{-1}$, 12\% of W+3jet, 0$<$phat$<$100 GeV are missing to complete
129 < the sample. Once again, this production is not so much expected to contribute directly
130 < to the final state studied.
131 < \item at 700 pb$^{-1}$, 6\% of W+5jet 0$<$phat$<$100 are missing to complete the sample.
132 < \item at 700 pb$^{-1}$, 8\% of \Z + 0 jet are missing. This is not a major background
133 < for the analysis.
134 < \item at 900 pb$^{-1}$, a statistics of 6\% and 7\% \W +1jet 100$<$phat$<$300 and \W+2jets 100$<$phat$<$300
135 < respectively are missing.
136 < \item at 1 fb$^{-1}$, mainly all \W +jets samples are missing statistics.
137 < This samples are not fondammental as the efficiency is really low for this background.
138 < But 9\% of \Z+1jet 0$<$phat$<$100, 10\% of \Z+2jets 0$<$phat$<$100 and 2\% of \Z+3jets 0$<$phat$<$100
269 < cannot be included in the event yield. This can be a problem and the results at 1fb$^{-1}$ should be
270 < taken with care.
126 > \item \W + 0 jets is generated for the statistics below 100 pb$^{-1}$, nevertheless we
127 > do not expect to have so much events after the full selection is applied.
128 > \item at 600 pb$^{-1}$, 12\% of \W + 3 jet, 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate. Once again,
129 > this production is not so much expected to contribute directly to the final state studied.
130 > \item at 700 pb$^{-1}$, 6\% of \W + 5 jet 0 $<\hat{p}<$ 100 GeV is missing to make a valid estimate.
131 > \item at 700 pb$^{-1}$, 8\% of \Z + 0 jet is missing to make a valid estimate. This is not a major background
132 > for the analysis, see note above.
133 > \item at 900 pb$^{-1}$, 6\% and 7\% \W + 1 jet 100 $<\hat{p}<$ 300 and \W + 2 jets 100 $<\hat{p}<$ 300, respectively
134 > are missing to make a valid estimation.
135 > \item at 1 fb$^{-1}$, mainly all \W + jets have insufficient statistics to make a valid pseudo-experiment.
136 > These samples are not fundamental as the contribution of this process to \WZ final state is very small.
137 > However, 9\% of \Z + 1 jet 0$<\hat{p}<$100, 10\% of \Z + 2 jets 0$<\hat{p}<$100 and 2\% of \Z + 3 jets 0$<\hat{p}<$100
138 > cannot be included in the event yield. This can be a problem and the results at 1 \invfb should not be trusted.
139   \end{itemize}
140  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines