ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/BackgroundEstimationDetails.tex
Revision: 1.3
Committed: Fri Aug 8 00:05:00 2008 UTC (16 years, 9 months ago) by ymaravin
Content type: application/x-tex
Branch: MAIN
CVS Tags: Summer08-FinalApproved, HEAD
Changes since 1.2: +12 -8 lines
Log Message:
almost final version, the fruit of a hard work of Stephanie and YM...

File Contents

# Content
1 \section{Estimation of the background contributions}
2 \label{sec:moreDetailsBackground}
3 In this section we provide information on an alternative method to estimate
4 the background contribution to the \WZ signal where we estimate the instrumental
5 background with no genuine \Z boson from the \Z candidate invariant mass
6 side-band subtraction. The fit of the invariant mass distribution to the
7 Gaussian and linear functions for ``loose'' and ``tight'' \W leptons is given
8 in Fig.~\ref{fig:AllFits} using the full statistics of the CSA07 samples.
9 The fit is performed using an addition of a convolution of a Gaussian and Breit-Wigner function
10 and a line in order to fit the background. It has to be noticed that due to a lack
11 of statistics in ``Chowder soup'' sample, all bins with 0 events from the sample
12 have been modified in order to avoid to have a null uncertainty. The
13 corresponding uncertainty in the bin with no events correspond to the weight
14 of each process in the ``Chowder soup''. One can see that the uncertainties are
15 large, and the fit is not really constrained.
16
17 \begin{figure}[hbt]
18 \begin{center}
19 \scalebox{0.3}{\includegraphics{figs/Fit3eLoose.eps}\includegraphics{figs/Fit3eTight.eps}}\\
20 \scalebox{0.3}{\includegraphics{figs/Fit2e1muLoose.eps}\includegraphics{figs/Fit2e1muTight.eps}}\\
21 \scalebox{0.3}{\includegraphics{figs/Fit2mu1eLoose.eps}\includegraphics{figs/Fit2mu1eTight.eps}}\\
22 \scalebox{0.3}{\includegraphics{figs/Fit3muLoose.eps}\includegraphics{figs/Fit3muTight.eps}}\\
23 \caption{Invariant mass of \Z boson candidate for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$
24 signatures (from top to bottom) for the lepton passing loose (left) and tight (right) identification
25 criteria.}
26 \label{fig:AllFits}
27 \end{center}
28 \end{figure}
29
30 The linear fit takes into account not only the background with non-genuine
31 \Z boson but it also accounts for some part of the \Z+jets and
32 $Zb\bar{b}$ background as the $\gamma^*$ processes populate the sidebands as well.
33 However, the results are still consistent within errors, as it can be seen by comparison
34 of the last two columns in Table~\ref{tab:CompFit}.
35 \begin{table}[h]
36 \begin{center}
37 \begin{tabular}{|l|c|c|c|c|c|c|c|} \hline
38 & \multicolumn{2}{c|}{Background with genuine \Z} & \multicolumn{4}{c|}{Background without
39 genuine \Z boson} \\
40 Channel & $\Z+jets$ & $\Z b\bar{b}$ & $t\bar{t}$ & $\W+jets$ & Combined & Fit result \\ \hline
41 $3e$ Loose &7.1 & 2.9 & 1.1 & 0.4 & 1.5 & 1.5$ \pm $3.0 \\\hline
42 $3e$ Tight &2.0 & 1.2 & 0.6 & 0.4 & 1.0 & 1.1$ \pm $2.8 \\\hline
43 $2e1\mu$ Loose &4.0 & 4.7 & 6.2 & 0.0 & 6.2 & 6.0$ \pm $4.1 \\\hline
44 $2e1\mu$ Tight &0.0 & 0.1 & 0.7 & 0.0 & 0.7 & 1.0$ \pm $2.8 \\\hline
45 $2\mu 1e$ Loose &10.1 & 2.9 & 0.8 & 0.0 & 0.8 & 1.6$ \pm $3.1 \\\hline
46 $2\mu 1e$ Tight &1.8 & 1.3 & 0.6 & 0.0 & 0.6 & 1.0$ \pm $2.7 \\\hline
47 $3\mu$ Loose &4.5 & 4.2 & 5.9 & 0.0 & 5.9 & 3.1$ \pm $3.5 \\\hline
48 $3\mu$ Tight &0.1 & 0.3 & 0.3 & 0.0 & 0.3 & 0.5$ \pm $2.5 \\\hline
49 \end{tabular}
50 \end{center}
51 \caption{Comparison between Monte Carlo truth information and the results
52 of the fit for the background without genuine \Z boson. Number of events are
53 obtained in the invariant mass range between 81 and 101 GeV. The ``loose'' and ``tight''
54 selection criteria applied on the \W lepton candidate.}
55 \label{tab:CompFit}
56 \end{table}
57
58 The comparison between estimated background and the MC truth information is provided
59 in Table~\ref{tab:FinalXCLoose} for ``loose'' and \ref{tab:FinalXC} for ``tight'' lepton candidates.
60 Within uncertainties the results agree with each other for every signature and every category of
61 \W lepton identification. The agreement between predicted and MC truth background
62 as function of the dilepton mass is given in Figs.~\ref{fig:FinalMatrix3e}-\ref{fig:FinalMatrix3mu}
63 for all four signal categories respectively.
64
65 \begin{table}[hbt]
66 \begin{center}
67 \begin{tabular}{lcccc} \hline \hline
68 & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
69 $N$ - ZZ -Z$\gamma$ &19.6$\pm$1.2&23.9$\pm$0.7&23.1$\pm$1.1&25.9$\pm$0.8\\ \hline
70 $N^{non genuine~Z}$ (Fit) & 1.5$\pm$3.0& 6.0$\pm$4.1& 1.6$\pm$3.1& 3.1$\pm$3.5\\ \hline
71 $N^{genuine~Z}$ (matrix method)&11.6$\pm$6.6&10.5$\pm$5.4&14.5$\pm$6.6&12.6$\pm$4.7\\ \hline
72 $N^{\WZ}$ & 6.6$\pm$7.4& 7.3$\pm$6.8& 7.0$\pm$7.4&10.2$\pm$6.0\\ \hline
73 \WZ from MC & 8.1 & 9.0 & 9.2 &11.3\\
74 \hline
75 \end{tabular}
76 \caption{Expected number of selected events for an integrated luminosity of 300
77 pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV
78 with the full selection criteria applied but the requirement on the \W lepton which is
79 required to pass only ``loose'' criteria.}
80 \label{tab:FinalXCLoose}
81 \end{center}
82 \end{table}
83
84 \begin{table}[hbt]
85 \begin{center}
86 \begin{tabular}{lcccc} \hline \hline
87 & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
88 $N$ - ZZ -Zgamma &12.1$\pm$1.1 &8.9$\pm$0.6 &12.8$\pm$1.0 &10.8$\pm$0.7\\ \hline
89 $N^{non genuine Z}$ (Fit) & 1.1$\pm$2.8 &1.0$\pm$2.8 & 1.0$\pm$2.7 & 0.5$\pm$2.5\\ \hline
90 $N^{genuine Z}$ (matrix method)& 3.7$\pm$1.8 &0.6$\pm$0.8 & 4.6$\pm$2.0 & 0.8$\pm$1.0\\ \hline
91 $N^{WZ}$ & 7.3$\pm$3.5 &7.3$\pm$3.0 & 7.1$\pm$3.5 & 9.6$\pm$2.7\\ \hline
92 \WZ from MC & 7.9 &8.1 & 9.0 & 10.1\\ \hline
93 \end{tabular}
94 \caption{Expected number of selected events for an integrated luminosity of 300
95 pb$^{-1}$ for the signal and estimated background with 81 GeV $< M_Z < $ 101 GeV for
96 the full selection criteria applied.}
97 \label{tab:FinalXC}
98 \end{center}
99 \end{table}
100
101 \begin{figure}[hbt]
102 \begin{center}
103 \scalebox{0.62}{\includegraphics{figs/MatrixMethod3eLooseTightZmassMWtCut.eps}}
104 \caption{Comparison between background predicted with matrix method and MC truth information for the
105 $3e$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
106 on the \W lepton for background (a, b) and signal (c, d).}
107 \label{fig:FinalMatrix3e}
108 \end{center}
109 \end{figure}
110
111 \begin{figure}[hbt]
112 \begin{center}
113 \scalebox{0.62}{\includegraphics{figs/MatrixMethod2e1muLooseTightZmassMWtCut.eps}}
114 \caption{
115 Comparison between background predicted with matrix method and MC truth information for the
116 $2e1\mu$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
117 on the \W lepton for background (a, b) and signal (c, d).}
118 \label{fig:FinalMatrix2e1mu}
119 \end{center}
120 \end{figure}
121
122 \begin{figure}[hbt]
123 \begin{center}
124 \scalebox{0.62}{\includegraphics{figs/MatrixMethod2mu1eLooseTightZmassMWtCut.eps}}
125 \caption{Comparison between background predicted with matrix method and MC truth information for the
126 $2\mu 1e$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
127 on the \W lepton for background (a, b) and signal (c, d).}
128 \label{fig:FinalMatrix2mu1e}
129 \end{center}
130 \end{figure}
131
132 \begin{figure}[hbt]
133 \begin{center}
134 \scalebox{0.62}{\includegraphics{figs/MatrixMethod3muLooseTightZmassMWtCut.eps}}
135 \caption{Comparison between background predicted with matrix method and MC truth information for the
136 $3\mu$ channel as a function of the \Z boson candidate invariant mass for loose (a, c) and tight (b, d) requirements
137 on the \W lepton for background (a, b) and signal (c, d).}
138 \label{fig:FinalMatrix3mu}
139 \end{center}
140 \end{figure}