ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
Revision: 1.3
Committed: Sat Jun 21 22:17:35 2008 UTC (16 years, 10 months ago) by beaucero
Content type: application/x-tex
Branch: MAIN
Changes since 1.2: +29 -1 lines
Log Message:
Steph Sys

File Contents

# User Rev Content
1 beaucero 1.2 In this section, we will assign systematics errors to this
2     analysis. The assignement of systematics is expected to be
3     conservatives.
4    
5     \subsection{Experimental Systematics}
6    
7     The experimental systematics errors expected that will affect the
8     signal and standard model background are:
9     \begin{itemize}
10     \item For trigger selection, a systematics of 1\% is assigned. Even
11     though the efficiency of the signal is greater than 99\%, the trigger
12     path used for both muons and electron expect the leptons to be
13     isolated. As the isolation depends on the occupancy of the events,
14     the alignment of the tracker (when considering tracker isolation
15     variables) and noise in the calorimeters (when considering a
16     calorimetric isolation), this value is expected to be conservative.
17    
18     \item 3\% error is assigned on electron/muons reconstruction. Both of
19     them are link to alignment of the track in order to reconstruct the
20     leptons. A systematics of 2\% is assigned for the determination of
21     the charge of the electron candidate while 1\% for the muon as the
22     electron problem is coming from the high probability of emission of
23     photons.
24    
25     \item A systematics of 1\% will be assigned for the measurement of
26     the lepton energy.
27    
28     \item 4\% of systematics are considered for the electron
29     identification, 2\% for the muon case.
30     \end{itemize}
31    
32     The PDF uncertainties on the signal has been determined in~\cite{OldNote}.
33     The uncertainty was found to be:
34     \begin{equation}
35 beaucero 1.3 \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\%
36 beaucero 1.2 \end{equation}
37    
38     The luminosity error is expected to be 10\%.
39    
40     The table~\ref{tab:sys} resume all systematics considered.
41    
42     \begin{table}[!]
43     \begin{center}
44     \begin{tabular}{|l|c|c|} \hline
45     Systematics Source (in \%) & Cross Section & Signficance \\ \hline
46     Luminosity & 10.0 & - \\
47     Trigger & 1.0 & 1.0\\
48     Lepton Reconstruction & 3.0 & 3.0\\
49     Electron Charge Determination &2.0& 2.0\\
50     Muon Charge Determination &1.0& 1.0\\
51     Lepton Energy Scale& 1.0& 1.0\\
52     Electron Identification& 4.0 &4.0\\
53     Muon Identification& 2.0 &2.0\\
54     PDF Uncertainties& - & + 3.9\\
55     & & - 3.5 \\ \hline
56     \end{tabular}
57    
58     \end{center}
59     \caption{Systematics in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity.}
60     \label{tab:sys}
61     \end{table}
62    
63    
64     \subsection{Background Substraction Systematics}
65    
66     Two methods will be used to substract the different background. The
67     main background is the production $Z+jets$. Such background can be
68     estimated using data as presented in section~\ref{sec:SignalExt}. For
69     the $t\bar{t}$ background, we can use safely the side band around the
70     $Z$ mass in order to evaluate it.
71 beaucero 1.3
72     If we consider an error of xx\% on the fake rate and an error of xx\%
73     on the efficiency on signal to go from loose to tight criteria, we can
74     calculate the error on the estimated background as follow:
75     \begin{equation}
76     \Delta N_j ^{t} = \frac{\sqrt{(p[N_{t} - p(N_{l}+N_{t})])^2 \times \Delta \epsilon^2
77     +(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]^2 \times \Delta p^2
78     + (p\epsilon)^2 \times N_{l} + [p(\epsilon -1 )]^2 \times N_{t}}}{\epsilon_{t} - p}
79     %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
80     %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
81     %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
82     \end{equation}
83     where $N_{t}$ and $N_{l}$ represents respectivement the number of
84     events in the tight sample and in the loose sample and if they are
85     greater than 25.$\epsilon$ represent efficiency for a loose electron
86     to pass the tight criteria, $\Delta \epsilon$ the error on this
87     value.$p$ gives the probability for a fake loose electron to pass also
88     the tight criteria and $\Delta p$ its error.
89    
90    
91    
92     An example of the method is given on figure~\ref{fig:Fitbkg}. The
93     number of estimated background compare to the true value is shown on
94     table~\ref{tab:FitbkgSub}.
95    
96     We assign a systematics error of 20\%.
97    
98