1 |
ymaravin |
1.7 |
In this section, we estimate systematics uncertainties of the methods
|
2 |
|
|
used in this analysis. We follow the rule of making conservative estimates
|
3 |
|
|
throughout this section.
|
4 |
|
|
|
5 |
|
|
\subsection{Modeling systematics}
|
6 |
|
|
|
7 |
|
|
The sources of systematic uncertainties due to modeling of trigger,
|
8 |
|
|
reconstruction, PDF, and luminosity are described below
|
9 |
|
|
|
10 |
beaucero |
1.2 |
\begin{itemize}
|
11 |
ymaravin |
1.7 |
\item {\it Trigger}: the trigger path used to select four categories require
|
12 |
|
|
leptons to be isolated. Though, the isolation criteria depends on the
|
13 |
|
|
occupancy of the sub-detectors, the alignment of the tracker (when
|
14 |
|
|
considering tracker isolation variables), and noise in the calorimeters (when
|
15 |
|
|
considering a calorimetric isolation), the trigger efficiency is
|
16 |
|
|
expected to be around 99\%, and therefore, a systematic uncertainty
|
17 |
|
|
is conservatively estimated as 1\%.
|
18 |
|
|
|
19 |
|
|
\item {\it Reconstruction}: we assign 2\% systematic uncertainty per lepton
|
20 |
|
|
due to initial tracker alignment which is of paramount importance to
|
21 |
|
|
reconstruct leptons, 2\% and 1\% is assigned for the determination
|
22 |
|
|
of the charge of the electron and muon candidates, respectively. We assigned
|
23 |
|
|
a larger electron charge identification uncertainty due to much stronger
|
24 |
|
|
Bremsstrahlung energy loss which makes the charge identification more
|
25 |
|
|
difficult.
|
26 |
|
|
|
27 |
|
|
\item {\it Lepton identification}: we assign 4\% of systematic uncertainty
|
28 |
|
|
due to efficiency measurement from early data using ``tag-and-probe''
|
29 |
|
|
method and 2\% for that for a muon. Additionally we assign a systematic
|
30 |
|
|
uncertainty on lepton energy scale of 2\% per lepton.
|
31 |
|
|
|
32 |
|
|
\item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription
|
33 |
|
|
described in~\cite{OldNote}. The uncertainty is found to be
|
34 |
|
|
$$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$.
|
35 |
beaucero |
1.2 |
|
36 |
ymaravin |
1.7 |
\item {\it Luminosity}: we estimate luminosity uncertainty of 10\%.
|
37 |
beaucero |
1.2 |
\end{itemize}
|
38 |
|
|
|
39 |
ymaravin |
1.7 |
The systematic uncertainties are summarized in Table~\ref{tab:sys}.
|
40 |
beaucero |
1.2 |
|
41 |
beaucero |
1.4 |
\begin{table}[!tb]
|
42 |
beaucero |
1.2 |
\begin{center}
|
43 |
|
|
\begin{tabular}{|l|c|c|} \hline
|
44 |
ymaravin |
1.7 |
& \multicolumn{2}{c|}{Systematic uncertainty} \\
|
45 |
|
|
Source & on the cross section,\% & on the signficance,\% \\ \hline
|
46 |
beaucero |
1.2 |
Luminosity & 10.0 & - \\
|
47 |
|
|
Trigger & 1.0 & 1.0\\
|
48 |
ymaravin |
1.7 |
Lepton reconstruction & 2.0 & 2.0\\
|
49 |
|
|
Electron charge determination &2.0& 2.0\\
|
50 |
|
|
Muon charge determination &1.0& 1.0\\
|
51 |
|
|
Lepton energy scale& 1.0& 1.0\\
|
52 |
|
|
Electron identification& 4.0 &4.0\\
|
53 |
|
|
Muon identification& 2.0 &2.0\\
|
54 |
|
|
PDF uncertainties& - & + 3.9\\
|
55 |
beaucero |
1.2 |
& & - 3.5 \\ \hline
|
56 |
|
|
\end{tabular}
|
57 |
|
|
|
58 |
|
|
\end{center}
|
59 |
ymaravin |
1.7 |
\caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement
|
60 |
|
|
and significance estimation for 1 fb$^-1$ of integrated luminosity.}
|
61 |
beaucero |
1.2 |
\label{tab:sys}
|
62 |
|
|
\end{table}
|
63 |
|
|
|
64 |
|
|
|
65 |
ymaravin |
1.7 |
\subsection{Systematic uncertainties due to background estimation method}
|
66 |
|
|
|
67 |
|
|
In the following we estimate a systematic uncertainty due to estimation
|
68 |
|
|
of background using the matrix method described in Section~\ref{sec:D0Matrix} above.
|
69 |
|
|
|
70 |
|
|
|
71 |
beaucero |
1.2 |
|
72 |
beaucero |
1.6 |
We present here, the result for the case where the $W$ is decaying via
|
73 |
|
|
an electron.
|
74 |
beaucero |
1.3 |
|
75 |
beaucero |
1.6 |
Two steps will be used to substract the different background: first,
|
76 |
|
|
the non peaking background should be substracted, then the background
|
77 |
|
|
$Z+jets$ will be determine using the method described
|
78 |
|
|
in~\ref{sec:D0Matrix}.
|
79 |
|
|
|
80 |
|
|
From the fit, we will consider a systematics error of 10\%.
|
81 |
|
|
|
82 |
|
|
If we consider an error of 5\% on the fake rate and an error of 2\%
|
83 |
beaucero |
1.3 |
on the efficiency on signal to go from loose to tight criteria, we can
|
84 |
|
|
calculate the error on the estimated background as follow:
|
85 |
|
|
\begin{equation}
|
86 |
beaucero |
1.6 |
\Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2
|
87 |
|
|
+(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2
|
88 |
|
|
+ (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2}
|
89 |
beaucero |
1.3 |
%\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
|
90 |
|
|
%+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
|
91 |
|
|
%+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
|
92 |
|
|
\end{equation}
|
93 |
beaucero |
1.6 |
where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
|
94 |
|
|
respectivement the number of events in the tight sample and in the
|
95 |
|
|
loose sample and their errors.$\epsilon$ represent efficiency for a
|
96 |
|
|
loose electron to pass the tight criteria, $\Delta \epsilon$ the error
|
97 |
|
|
on this value.$p$ gives the probability for a fake loose electron to
|
98 |
|
|
pass also the tight criteria and $\Delta p$ its error.
|
99 |
beaucero |
1.3 |
|
100 |
beaucero |
1.6 |
The overall error from the background substraction is 18\%.
|
101 |
beaucero |
1.3 |
|
102 |
beaucero |
1.4 |
\subsection{Summary of Systematics}
|
103 |
|
|
|
104 |
|
|
In table~\ref{tab:FullSys}, the systematics errors are expressed for
|
105 |
|
|
each channels.
|
106 |
|
|
|
107 |
|
|
\begin{table}[!tb]
|
108 |
|
|
\begin{center}
|
109 |
|
|
\begin{tabular}{|l|c|c|} \hline
|
110 |
|
|
Channels & Cross Section & Signficance \\ \hline
|
111 |
|
|
3e & 8.4\% +10\% = 13.1\% & +9.3\% / - 9.2\% \\
|
112 |
|
|
2e1$\mu$ & 7.7\% +10\% = 12.6\% & +8.7\% / - 8.5\% \\
|
113 |
|
|
1e2$\mu$ & 6.5\% +10\% = 11.9\% & +7.6\% / - 7.4\% \\
|
114 |
|
|
3$\mu$ & 5.5\% +10\% = 11.4\% & +6.7\% / - 6.5\% \\\hline
|
115 |
|
|
\end{tabular}
|
116 |
|
|
|
117 |
|
|
\end{center}
|
118 |
|
|
\caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity. These systematics do not include the background substraction.}
|
119 |
|
|
\label{tab:FullSys}
|
120 |
|
|
\end{table}
|
121 |
|
|
|
122 |
beaucero |
1.6 |
\subsection{Background Substraction}
|