ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.15 by beaucero, Tue Jul 15 20:25:14 2008 UTC vs.
Revision 1.20 by ymaravin, Fri Aug 8 00:05:00 2008 UTC

# Line 4 | Line 4 | In this section, we estimate systematics
4   used in this analysis. We follow the rule of making conservative estimates
5   throughout this section.
6  
7 \subsection{Modeling systematics}
8
7   The sources of systematic uncertainties due to modeling of trigger,
8   reconstruction, PDF, and luminosity are described below
9  
# Line 18 | Line 16 | reconstruction, PDF, and luminosity are
16   trigger efficiency is expected to be around 99\%, and therefore, a
17   systematic uncertainty is conservatively estimated as 1\%. From the
18   current analysis of $Z\rightarrow l^+l^-$ in
19 < CMS~\ref{Zmumu}~\ref{Zee}, the number of \Z events is estimated of the
20 < order of 50k per 100 pb$^{-1}$ of data analysed. To determine the
21 < trigger efficiency ``tag-and-probe'' method~\ref{TP} will be used.
19 > CMS~\cite{Zmumu}~\cite{Zee}, the number of \Z events is estimated of the
20 > order of 50k per 100 pb$^{-1}$ of data analyzed. To determine the
21 > trigger efficiency ``tag-and-probe'' method~\cite{TP} will be used.
22  
23   \item {\it Reconstruction}: we assign 2\% systematic uncertainty per
24   lepton due to initial tracker alignment which is of paramount
# Line 28 | Line 26 | reconstruction, PDF, and luminosity are
26   determination of the charge of the electron and muon candidates,
27   respectively. We assigned a larger electron charge identification
28   uncertainty due to much stronger Bremsstrahlung energy loss which
29 < makes the charge identification more difficult. The mismeasurement of
29 > makes the charge identification more difficult. The mis-measurement of
30   the charge is of the order of 2\% in CMSSW\_1\_6\_7 release for
31   electron. The estimation of the fraction with data will be done by
32   looking at the \Z peak without opposite charge requirement. Then
33   number of events within the \Z mass windows asking for two leptons of
34 < same sign will give us a estimate of the fraction of mismeasure sign
34 > same sign will give us a estimate of the fraction of mis-measured sign
35   leptons.
36    
37   \item {\it Lepton identification}: we assign 4\% of systematic
# Line 44 | Line 42 | reconstruction, PDF, and luminosity are
42  
43   \item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription
44   described in~\cite{OldNote}. The uncertainty is found to be
45 < $$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$.
45 > $$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$
46  
47   \item {\it Luminosity}: we estimate luminosity uncertainty of 10\%.
48   \end{itemize}
# Line 53 | Line 51 | The systematic uncertainties are summari
51  
52   \begin{table}[!tb]
53   \begin{center}
54 < \begin{tabular}{|l|c|c|} \hline
55 <                &   \multicolumn{2}{c|}{Systematic uncertainty} \\
56 < Source   &   on the cross section,\%     &  on the signficance,\% \\ \hline
57 < Luminosity  &   10.0   &  -         \\
58 < Trigger & 1.0 & 1.0\\
59 < Lepton reconstruction & 2.0 & 2.0\\
60 < Electron charge determination &2.0& 2.0\\
61 < Muon charge determination &1.0& 1.0\\
62 < Lepton energy scale& 1.0& 1.0\\
63 < Electron identification& 4.0 &4.0\\
64 < Muon identification& 2.0 &2.0\\
65 < PDF uncertainties& - & + 3.9\\
66 < &  & - 3.5 \\ \hline
54 > \begin{tabular}{|l|c|} \hline
55 > Source   &   Systematic uncertainty,\% \\ \hline
56 > Luminosity                      &   10.0        \\
57 > Trigger                         &    1.0        \\
58 > Lepton reconstruction           &    2.0        \\
59 > Electron charge determination   &    2.0        \\
60 > Muon charge determination       &    1.0        \\
61 > Lepton energy scale             &    1.0        \\
62 > Electron identification         &    4.0        \\
63 > Muon identification             &    2.0        \\
64 > PDF uncertainties               &    4.0        \\
65 > $M_{T}(W)$ requirement          &   10.0        \\ \hline
66 >
67   \end{tabular}
68  
69   \end{center}
70 < \caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement
71 < and significance estimation for 300 \invpb of integrated luminosity.}
70 > \caption{Systematic uncertainties for $pp\rightarrow \WZ$ process
71 > estimated for a scenario of 300~\invpb of integrated luminosity data sample.}
72   \label{tab:sys}
73   \end{table}
74  
75  
76 < \subsection{Systematic uncertainties due to background estimation method}
77 <
80 < In the following we estimate a systematic uncertainty due to estimation
81 < of background using the matrix method described in Section~\ref{sec:D0Matrix} above.
82 <
83 <
76 > We assign 100\% systematic uncertainty on the instrumental backgrounds without
77 > genuine \Z boson. This correspond to 7\% effective systematic uncertainty on the final result.
78  
79 < We present here, the result for the case where the $W$ is decaying via
80 < an electron.
81 <
88 < Two steps will be used to substract the different background: first,
89 < the non peaking background should be substracted, then the background
90 < $Z+jets$ will be determine using the method described
91 < in~\ref{sec:D0Matrix}.
92 <
93 < %From the fit, we will consider a systematics error of 10\%.
94 <
95 < If we consider an error of 4\%
96 < on the fake rate and an error of 1\%
97 < on the efficiency on signal to go from loose to tight criteria, we can
98 < calculate the error on the estimated background as follow:
79 > The systematic uncertainty on the number of the genuine \Z boson background
80 > events $\Delta N_j^t$ estimated using the matrix method described in Section~\ref{sec:D0Matrix}
81 > is calculated as
82   \begin{equation}
83 < \Delta N_j ^{t} = \sqrt{\left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta \epsilon^2
84 < +\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta p^2
85 < + \frac{p^2\left(\epsilon^2\Delta N_{l}^2 -  \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2}}
83 > \left(\Delta N_j ^{t}\right)^2 = \left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \Delta \epsilon^2
84 > +\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \Delta p^2
85 > + \frac{p^2\left(\epsilon^2\Delta N_{l}^2 -  \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2},
86   \end{equation}
104 where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
105 respectivement the number of events in the tight sample and in the
106 loose sample and their errors.$\epsilon$ represent efficiency for a
107 loose electron to pass the tight criteria, $\Delta \epsilon$ the error
108 on this value.$p$ gives the probability for a fake loose electron to
109 pass also the tight criteria and $\Delta p$ its error.
110
111 %The overall error from the background substraction is XXX %18\%.
112
113 \subsection{Summary of Systematics}
87  
88 < In table~\ref{tab:FullSys}, the systematics errors are expressed for
89 < each channels.
88 > where $N_t$ and $N_l$ are the numbers of observed events in tight and loose samples
89 > after the \ZZ and \Z$\gamma$ backgrounds have been subtracted. $\Delta N_t$ and $\Delta N_l$
90 > are the systematic uncertainties associated with this subtraction.  We take those as
91 > 100\% of the estimated physics background from the Monte Carlo simulation. Finally,
92 > $\epsilon$ and $p$ are genuine and misidentified ``loose'' lepton efficiency to
93 > satisfy ``tight'' requirements.
94 >
95 > We summarize full systematic uncertainties in Table~\ref{tab:FullSys} for each
96 > individual signature. The systematic uncertainty is smaller than statistical uncertainty
97 > which is roughly 30\% for each channel. Improvement in understanding of the MET,
98 > better measurement of the $p_{fake}$ allow to decrease the overall systematic uncertainty
99 > with larger data sample.
100  
101   \begin{table}[!tb]
102   \begin{center}
103 < \begin{tabular}{|l|c|c|} \hline
104 < Channels   &   Cross Section     & Signficance \\ \hline
105 < 3e  &  8.4\% +10\% = 13.1\%  &  +9.3\% / - 9.2\%         \\
106 < 2e1$\mu$  & 7.7\% +10\% = 12.6\%  &  +8.7\% / - 8.5\%         \\
107 < 1e2$\mu$  &  6.5\% +10\% = 11.9\%  &  +7.6\% / - 7.4\%         \\
108 < 3$\mu$  &  5.5\% +10\% = 11.4\%  &  +6.7\% / - 6.5\%         \\\hline
103 > \begin{tabular}{|l|c|c|c|} \hline
104 > Channels        &  Modeling, \% &  Background estimation, \%    & Total, \%     \\ \hline
105 > $3e$            &  17           &  13                           & 21            \\
106 > $2e1\mu$        &  17           &  11                           & 20            \\
107 > $2\mu1e$        &  16           &  15                           & 22            \\
108 > $3\mu$          &  16           &  10                           & 19            \\ \hline
109   \end{tabular}
110  
111   \end{center}
112 < \caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 300 \invpb of integrated luminosity. These systematics do not include the background substraction.}
112 > \caption{Total systematic uncertainty for identification of $pp\rightarrow WZ$ production.}
113   \label{tab:FullSys}
114   \end{table}
115  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines