1 |
< |
- Systematics on selection\\ |
2 |
< |
- On Cross Section for MC\\ |
3 |
< |
- On D0Matrix method\\ |
1 |
> |
\section{Systematic uncertainties} |
2 |
> |
\label{sec:systematic} |
3 |
> |
In this section, we estimate systematics uncertainties of the methods |
4 |
> |
used in this analysis. We follow the rule of making conservative estimates |
5 |
> |
throughout this section. |
6 |
> |
|
7 |
> |
\subsection{Modeling systematics} |
8 |
> |
|
9 |
> |
The sources of systematic uncertainties due to modeling of trigger, |
10 |
> |
reconstruction, PDF, and luminosity are described below |
11 |
> |
|
12 |
> |
\begin{itemize} |
13 |
> |
\item {\it Trigger}: the trigger path used to select four categories |
14 |
> |
require leptons to be isolated. Though, the isolation criteria |
15 |
> |
depends on the occupancy of the sub-detectors, the alignment of the |
16 |
> |
tracker (when considering tracker isolation variables), and noise in |
17 |
> |
the calorimeters (when considering a calorimetric isolation), the |
18 |
> |
trigger efficiency is expected to be around 99\%, and therefore, a |
19 |
> |
systematic uncertainty is conservatively estimated as 1\%. From the |
20 |
> |
current analysis of $Z\rightarrow l^+l^-$ in |
21 |
> |
CMS~\cite{Zmumu}~\cite{Zee}, the number of \Z events is estimated of the |
22 |
> |
order of 50k per 100 pb$^{-1}$ of data analysed. To determine the |
23 |
> |
trigger efficiency ``tag-and-probe'' method~\cite{TP} will be used. |
24 |
> |
|
25 |
> |
\item {\it Reconstruction}: we assign 2\% systematic uncertainty per |
26 |
> |
lepton due to initial tracker alignment which is of paramount |
27 |
> |
importance to reconstruct leptons, 2\% and 1\% is assigned for the |
28 |
> |
determination of the charge of the electron and muon candidates, |
29 |
> |
respectively. We assigned a larger electron charge identification |
30 |
> |
uncertainty due to much stronger Bremsstrahlung energy loss which |
31 |
> |
makes the charge identification more difficult. The mismeasurement of |
32 |
> |
the charge is of the order of 2\% in CMSSW\_1\_6\_7 release for |
33 |
> |
electron. The estimation of the fraction with data will be done by |
34 |
> |
looking at the \Z peak without opposite charge requirement. Then |
35 |
> |
number of events within the \Z mass windows asking for two leptons of |
36 |
> |
same sign will give us a estimate of the fraction of mismeasure sign |
37 |
> |
leptons. |
38 |
> |
|
39 |
> |
\item {\it Lepton identification}: we assign 4\% of systematic |
40 |
> |
uncertainty due to efficiency measurement from early data using |
41 |
> |
``tag-and-probe'' method and 2\% for that for a muon. Additionally we |
42 |
> |
assign a systematic uncertainty on lepton energy scale of 2\% per |
43 |
> |
lepton. The leptons scale will be established using the \Z mass peak. |
44 |
> |
|
45 |
> |
\item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription |
46 |
> |
described in~\cite{OldNote}. The uncertainty is found to be |
47 |
> |
$$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$ |
48 |
> |
|
49 |
> |
\item {\it Luminosity}: we estimate luminosity uncertainty of 10\%. |
50 |
> |
\end{itemize} |
51 |
> |
|
52 |
> |
The systematic uncertainties are summarized in Table~\ref{tab:sys}. |
53 |
> |
|
54 |
> |
\begin{table}[!tb] |
55 |
> |
\begin{center} |
56 |
> |
\begin{tabular}{|l|c|c|} \hline |
57 |
> |
& \multicolumn{2}{c|}{Systematic uncertainty} \\ |
58 |
> |
Source & on the cross section,\% & on the signficance,\% \\ \hline |
59 |
> |
Luminosity & 10.0 & - \\ |
60 |
> |
Trigger & 1.0 & 1.0\\ |
61 |
> |
Lepton reconstruction & 2.0 & 2.0\\ |
62 |
> |
Electron charge determination &2.0& 2.0\\ |
63 |
> |
Muon charge determination &1.0& 1.0\\ |
64 |
> |
Lepton energy scale& 1.0& 1.0\\ |
65 |
> |
Electron identification& 4.0 &4.0\\ |
66 |
> |
Muon identification& 2.0 &2.0\\ |
67 |
> |
PDF uncertainties& + 3.9 & + 3.9\\ |
68 |
> |
&- 3.5 & - 3.5 \\ \hline |
69 |
> |
\end{tabular} |
70 |
> |
|
71 |
> |
\end{center} |
72 |
> |
\caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement |
73 |
> |
and significance estimation for 300~\invpb of integrated luminosity.} |
74 |
> |
\label{tab:sys} |
75 |
> |
\end{table} |
76 |
> |
|
77 |
> |
|
78 |
> |
\subsection{Systematic uncertainties due to background estimation method} |
79 |
> |
|
80 |
> |
In the following we estimate a systematic uncertainty due to estimation |
81 |
> |
of background using the matrix method described in Section~\ref{sec:D0Matrix} above. |
82 |
> |
|
83 |
> |
|
84 |
> |
|
85 |
> |
We present here, the result for the case where the $W$ is decaying via |
86 |
> |
an electron. |
87 |
> |
|
88 |
> |
Two steps will be used to substract the different background: first, |
89 |
> |
the non peaking background should be substracted, then the background |
90 |
> |
$Z+jets$ will be determine using the method described |
91 |
> |
in~\ref{sec:D0Matrix}. |
92 |
> |
|
93 |
> |
%From the fit, we will consider a systematics error of 10\%. |
94 |
> |
|
95 |
> |
If we consider an error $\Delta p$ |
96 |
> |
%of 4\% |
97 |
> |
on the fake rate and an error $\Delta \epsilon$ |
98 |
> |
%of 1\% |
99 |
> |
on the efficiency on signal to go from loose to tight criteria, we can |
100 |
> |
calculate the error on the estimated background as follow: |
101 |
> |
\begin{equation} |
102 |
> |
\Delta N_j ^{t} = \sqrt{\left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta \epsilon^2 |
103 |
> |
+\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta p^2 |
104 |
> |
+ \frac{p^2\left(\epsilon^2\Delta N_{l}^2 - \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2}} |
105 |
> |
\end{equation} |
106 |
> |
where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents |
107 |
> |
respectivement the number of events in the tight sample and in the |
108 |
> |
loose sample and their errors.$\epsilon$ represent efficiency for a |
109 |
> |
loose electron to pass the tight criteria. |
110 |
> |
%, $\Delta \epsilon$ the error on this value. |
111 |
> |
$p$ gives the probability for a fake loose electron to |
112 |
> |
pass also the tight criteria. |
113 |
> |
%and $\Delta p$ its error. |
114 |
> |
|
115 |
> |
%The overall error from the background substraction is XXX %18\%. |
116 |
> |
|
117 |
> |
\subsection{Summary of Systematics} |
118 |
> |
|
119 |
> |
In table~\ref{tab:FullSys}, the systematics errors are expressed for |
120 |
> |
each channels. |
121 |
> |
|
122 |
> |
\begin{table}[!tb] |
123 |
> |
\begin{center} |
124 |
> |
\begin{tabular}{|l|c|c|} \hline |
125 |
> |
Channels & Cross Section & Signficance \\ \hline |
126 |
> |
3e & +9.3\% / - 9.2\% +10\% = +13.7\% / -13.6\% & +9.3\% / - 9.2\% \\ |
127 |
> |
2e1$\mu$ & +8.7\% / - 8.5\% +10\% = +13.3\% / -13.1\% & +8.7\% / - 8.5\% \\ |
128 |
> |
1e2$\mu$ & +7.6\% / - 7.4\% +10\% = +12.7\% / -12.4\% & +7.6\% / - 7.4\% \\ |
129 |
> |
3$\mu$ & +6.7\% / - 6.5\% +10\% = +12.0\% / -11.9\% & +6.7\% / - 6.5\% \\\hline |
130 |
> |
\end{tabular} |
131 |
> |
|
132 |
> |
\end{center} |
133 |
> |
\caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 300 \invpb of integrated luminosity. These systematics do not include the background substraction.} |
134 |
> |
\label{tab:FullSys} |
135 |
> |
\end{table} |
136 |
> |
|