1 |
< |
|
1 |
> |
\section{Systematic uncertainties} |
2 |
> |
\label{sec:systematic} |
3 |
|
In this section, we estimate systematics uncertainties of the methods |
4 |
|
used in this analysis. We follow the rule of making conservative estimates |
5 |
|
throughout this section. |
6 |
|
|
7 |
|
\subsection{Modeling systematics} |
8 |
|
|
8 |
– |
|
9 |
|
The sources of systematic uncertainties due to modeling of trigger, |
10 |
|
reconstruction, PDF, and luminosity are described below |
11 |
|
|
18 |
|
trigger efficiency is expected to be around 99\%, and therefore, a |
19 |
|
systematic uncertainty is conservatively estimated as 1\%. From the |
20 |
|
current analysis of $Z\rightarrow l^+l^-$ in |
21 |
< |
CMS~\ref{Zmumu}~\ref{Zee}, the number of \Z events is estimated of the |
22 |
< |
order of 50k per 100pb$^{-1}$ of data analysed. To determine the |
23 |
< |
trigger efficiency ``tag-and-probe'' method~\ref{TP} will be used. |
21 |
> |
CMS~\cite{Zmumu}~\cite{Zee}, the number of \Z events is estimated of the |
22 |
> |
order of 50k per 100 pb$^{-1}$ of data analysed. To determine the |
23 |
> |
trigger efficiency ``tag-and-probe'' method~\cite{TP} will be used. |
24 |
|
|
25 |
|
\item {\it Reconstruction}: we assign 2\% systematic uncertainty per |
26 |
|
lepton due to initial tracker alignment which is of paramount |
40 |
|
uncertainty due to efficiency measurement from early data using |
41 |
|
``tag-and-probe'' method and 2\% for that for a muon. Additionally we |
42 |
|
assign a systematic uncertainty on lepton energy scale of 2\% per |
43 |
< |
lepton. The letpons scale will be established using the \Z mass peak. |
43 |
> |
lepton. The leptons scale will be established using the \Z mass peak. |
44 |
|
|
45 |
|
\item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription |
46 |
|
described in~\cite{OldNote}. The uncertainty is found to be |
47 |
< |
$$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$. |
47 |
> |
$$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$ |
48 |
|
|
49 |
|
\item {\it Luminosity}: we estimate luminosity uncertainty of 10\%. |
50 |
|
\end{itemize} |
64 |
|
Lepton energy scale& 1.0& 1.0\\ |
65 |
|
Electron identification& 4.0 &4.0\\ |
66 |
|
Muon identification& 2.0 &2.0\\ |
67 |
< |
PDF uncertainties& - & + 3.9\\ |
68 |
< |
& & - 3.5 \\ \hline |
67 |
> |
PDF uncertainties& + 3.9 & + 3.9\\ |
68 |
> |
&- 3.5 & - 3.5 \\ |
69 |
> |
$M_{T}(W)$ requirement & 10 & 10 \\ \hline |
70 |
|
\end{tabular} |
71 |
|
|
72 |
|
\end{center} |
73 |
|
\caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement |
74 |
< |
and significance estimation for 300 \invpb of integrated luminosity.} |
74 |
> |
and significance estimation for 300~\invpb of integrated luminosity.} |
75 |
|
\label{tab:sys} |
76 |
|
\end{table} |
77 |
|
|
91 |
|
$Z+jets$ will be determine using the method described |
92 |
|
in~\ref{sec:D0Matrix}. |
93 |
|
|
94 |
< |
From the fit, we will consider a systematics error of 10\%. |
94 |
> |
%From the fit, we will consider a systematics error of 10\%. |
95 |
|
|
96 |
< |
If we consider an error of 10\% |
97 |
< |
on the fake rate and an error of 2\% |
96 |
> |
If we consider an error $\Delta p$ |
97 |
> |
%of 4\% |
98 |
> |
on the fake rate and an error $\Delta \epsilon$ |
99 |
> |
%of 1\% |
100 |
|
on the efficiency on signal to go from loose to tight criteria, we can |
101 |
|
calculate the error on the estimated background as follow: |
102 |
|
\begin{equation} |
107 |
|
where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents |
108 |
|
respectivement the number of events in the tight sample and in the |
109 |
|
loose sample and their errors.$\epsilon$ represent efficiency for a |
110 |
< |
loose electron to pass the tight criteria, $\Delta \epsilon$ the error |
111 |
< |
on this value.$p$ gives the probability for a fake loose electron to |
112 |
< |
pass also the tight criteria and $\Delta p$ its error. |
110 |
> |
loose electron to pass the tight criteria. |
111 |
> |
%, $\Delta \epsilon$ the error on this value. |
112 |
> |
$p$ gives the probability for a fake loose electron to |
113 |
> |
pass also the tight criteria. |
114 |
> |
%and $\Delta p$ its error. |
115 |
|
|
116 |
< |
The overall error from the background substraction is XXX %18\%. |
116 |
> |
%The overall error from the background substraction is XXX %18\%. |
117 |
|
|
118 |
|
\subsection{Summary of Systematics} |
119 |
|
|
124 |
|
\begin{center} |
125 |
|
\begin{tabular}{|l|c|c|} \hline |
126 |
|
Channels & Cross Section & Signficance \\ \hline |
127 |
< |
3e & 8.4\% +10\% = 13.1\% & +9.3\% / - 9.2\% \\ |
128 |
< |
2e1$\mu$ & 7.7\% +10\% = 12.6\% & +8.7\% / - 8.5\% \\ |
129 |
< |
1e2$\mu$ & 6.5\% +10\% = 11.9\% & +7.6\% / - 7.4\% \\ |
130 |
< |
3$\mu$ & 5.5\% +10\% = 11.4\% & +6.7\% / - 6.5\% \\\hline |
127 |
> |
3e & +9.3\% / - 9.2\% +10\% = +13.7\% / -13.6\% & +9.3\% / - 9.2\% \\ |
128 |
> |
2e1$\mu$ & +8.7\% / - 8.5\% +10\% = +13.3\% / -13.1\% & +8.7\% / - 8.5\% \\ |
129 |
> |
1e2$\mu$ & +7.6\% / - 7.4\% +10\% = +12.7\% / -12.4\% & +7.6\% / - 7.4\% \\ |
130 |
> |
3$\mu$ & +6.7\% / - 6.5\% +10\% = +12.0\% / -11.9\% & +6.7\% / - 6.5\% \\\hline |
131 |
|
\end{tabular} |
132 |
|
|
133 |
|
\end{center} |