ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.3 by beaucero, Sat Jun 21 22:17:35 2008 UTC vs.
Revision 1.19 by ymaravin, Tue Jul 29 02:38:23 2008 UTC

# Line 1 | Line 1
1 < In this section, we will assign systematics errors to this
2 < analysis. The assignement of systematics is expected to be
3 < conservatives.
4 <
5 < \subsection{Experimental Systematics}
6 <
7 < The experimental systematics errors expected that will affect the
8 < signal and standard model background are:
1 > \section{Systematic uncertainties}
2 > \label{sec:systematic}
3 > In this section, we estimate systematics uncertainties of the methods
4 > used in this analysis. We follow the rule of making conservative estimates
5 > throughout this section.
6 >
7 > \subsection{Modeling systematics}
8 >
9 > The sources of systematic uncertainties due to modeling of trigger,
10 > reconstruction, PDF, and luminosity are described below
11 >
12   \begin{itemize}
13 < \item For trigger selection, a systematics of 1\% is assigned. Even
14 < though the efficiency of the signal is greater than 99\%, the trigger
15 < path used for both muons and electron expect the leptons to be
16 < isolated. As the isolation depends on the occupancy of the events,
17 < the alignment of the tracker (when considering tracker isolation
18 < variables) and noise in the calorimeters (when considering a
19 < calorimetric isolation), this value is expected to be conservative.
20 <
21 < \item 3\% error is assigned on electron/muons reconstruction. Both of
22 < them are link to alignment of the track in order to reconstruct the
23 < leptons. A systematics of 2\% is assigned for the determination of
24 < the charge of the electron candidate while 1\% for the muon as the
25 < electron problem is coming from the high probability of emission of
26 < photons.
27 <
28 < \item A systematics of 1\% will be assigned for the measurement of
29 < the lepton energy.
13 > \item {\it Trigger}: the trigger path used to select four categories
14 > require leptons to be isolated. Though, the isolation criteria
15 > depends on the occupancy of the sub-detectors, the alignment of the
16 > tracker (when considering tracker isolation variables), and noise in
17 > the calorimeters (when considering a calorimetric isolation), the
18 > trigger efficiency is expected to be around 99\%, and therefore, a
19 > systematic uncertainty is conservatively estimated as 1\%. From the
20 > current analysis of $Z\rightarrow l^+l^-$ in
21 > CMS~\cite{Zmumu}~\cite{Zee}, the number of \Z events is estimated of the
22 > order of 50k per 100 pb$^{-1}$ of data analysed. To determine the
23 > trigger efficiency ``tag-and-probe'' method~\cite{TP} will be used.
24 >
25 > \item {\it Reconstruction}: we assign 2\% systematic uncertainty per
26 > lepton due to initial tracker alignment which is of paramount
27 > importance to reconstruct leptons, 2\% and 1\% is assigned for the
28 > determination of the charge of the electron and muon candidates,
29 > respectively. We assigned a larger electron charge identification
30 > uncertainty due to much stronger Bremsstrahlung energy loss which
31 > makes the charge identification more difficult. The mismeasurement of
32 > the charge is of the order of 2\% in CMSSW\_1\_6\_7 release for
33 > electron. The estimation of the fraction with data will be done by
34 > looking at the \Z peak without opposite charge requirement. Then
35 > number of events within the \Z mass windows asking for two leptons of
36 > same sign will give us a estimate of the fraction of mismeasure sign
37 > leptons.
38 >  
39 > \item {\it Lepton identification}: we assign 4\% of systematic
40 > uncertainty due to efficiency measurement from early data using
41 > ``tag-and-probe'' method and 2\% for that for a muon. Additionally we
42 > assign a systematic uncertainty on lepton energy scale of 2\% per
43 > lepton. The leptons scale will be established using the \Z mass peak.
44 >
45 > \item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription
46 > described in~\cite{OldNote}. The uncertainty is found to be
47 > $$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$
48  
49 < \item 4\% of systematics are considered for the electron
29 < identification, 2\% for the muon case.
49 > \item {\it Luminosity}: we estimate luminosity uncertainty of 10\%.
50   \end{itemize}
51  
52 < The PDF uncertainties on the signal has been determined in~\cite{OldNote}.
33 < The uncertainty was found to be:
34 < \begin{equation}
35 < \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\%
36 < \end{equation}
52 > The systematic uncertainties are summarized in Table~\ref{tab:sys}.
53  
54 < The luminosity error is expected to be 10\%.
39 <
40 < The table~\ref{tab:sys} resume all systematics considered.
41 <
42 < \begin{table}[!]
54 > \begin{table}[!tb]
55   \begin{center}
56   \begin{tabular}{|l|c|c|} \hline
57 < Systematics Source (in \%)   &   Cross Section     & Signficance \\ \hline
57 >                &   \multicolumn{2}{c|}{Systematic uncertainty} \\
58 > Source   &   on the cross section,\%     &  on the signficance,\% \\ \hline
59   Luminosity  &   10.0   &  -         \\
60   Trigger & 1.0 & 1.0\\
61 < Lepton Reconstruction & 3.0 & 3.0\\
62 < Electron Charge Determination &2.0& 2.0\\
63 < Muon Charge Determination &1.0& 1.0\\
64 < Lepton Energy Scale& 1.0& 1.0\\
65 < Electron Identification& 4.0 &4.0\\
66 < Muon Identification& 2.0 &2.0\\
67 < PDF Uncertainties& - & + 3.9\\
68 < &  & - 3.5 \\ \hline
61 > Lepton reconstruction & 2.0 & 2.0\\
62 > Electron charge determination &2.0& 2.0\\
63 > Muon charge determination &1.0& 1.0\\
64 > Lepton energy scale& 1.0& 1.0\\
65 > Electron identification& 4.0 &4.0\\
66 > Muon identification& 2.0 &2.0\\
67 > PDF uncertainties& + 3.9 & + 3.9\\
68 > &- 3.5  & - 3.5 \\
69 > $M_{T}(W)$ requirement & 10 & 10 \\ \hline
70   \end{tabular}
71  
72   \end{center}
73 < \caption{Systematics in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity.}
73 > \caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement
74 > and significance estimation for 300~\invpb of integrated luminosity.}
75   \label{tab:sys}
76   \end{table}
77  
78  
79 < \subsection{Background Substraction Systematics}
79 > \subsection{Systematic uncertainties due to background estimation method}
80 >
81 > In the following we estimate a systematic uncertainty due to estimation
82 > of background using the matrix method described in Section~\ref{sec:D0Matrix} above.
83 >
84  
66 Two methods will be used to substract the different background. The
67 main background is the production $Z+jets$. Such background can be
68 estimated using data as presented in section~\ref{sec:SignalExt}. For
69 the $t\bar{t}$ background, we can use safely the side band around the
70 $Z$ mass in order to evaluate it.
85  
86 < If we consider an error of xx\% on the fake rate and an error of xx\%
86 > We present here, the result for the case where the $W$ is decaying via
87 > an electron.
88 >
89 > Two steps will be used to substract the different background: first,
90 > the non peaking background should be substracted, then the background
91 > $Z+jets$ will be determine using the method described
92 > in~\ref{sec:D0Matrix}.
93 >
94 > %From the fit, we will consider a systematics error of 10\%.
95 >
96 > If we consider an error $\Delta p$
97 > %of 4\%
98 > on the fake rate and an error $\Delta \epsilon$
99 > %of 1\%
100   on the efficiency on signal to go from loose to tight criteria, we can
101   calculate the error on the estimated background as follow:
102   \begin{equation}
103 < \Delta N_j ^{t} = \frac{\sqrt{(p[N_{t} - p(N_{l}+N_{t})])^2 \times \Delta \epsilon^2
104 < +(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]^2 \times \Delta p^2
105 < + (p\epsilon)^2 \times N_{l} + [p(\epsilon -1 )]^2 \times N_{t}}}{\epsilon_{t} - p}
79 < %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
80 < %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
81 < %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
103 > \Delta N_j ^{t} = \sqrt{\left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta \epsilon^2
104 > +\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta p^2
105 > + \frac{p^2\left(\epsilon^2\Delta N_{l}^2 -  \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2}}
106   \end{equation}
107 < where $N_{t}$ and $N_{l}$ represents respectivement the number of
108 < events in the tight sample and in the loose sample and if they are
109 < greater than 25.$\epsilon$ represent efficiency for a loose electron
110 < to pass the tight criteria, $\Delta \epsilon$ the error on this
111 < value.$p$ gives the probability for a fake loose electron to pass also
112 < the tight criteria and $\Delta p$ its error.
107 > where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
108 > respectivement the number of events in the tight sample and in the
109 > loose sample and their errors.$\epsilon$ represent efficiency for a
110 > loose electron to pass the tight criteria.
111 > %, $\Delta \epsilon$ the error on this value.
112 > $p$ gives the probability for a fake loose electron to
113 > pass also the tight criteria.
114 > %and $\Delta p$ its error.
115  
116 + %The overall error from the background substraction is XXX %18\%.
117  
118 + \subsection{Summary of Systematics}
119  
120 < An example of the method is given on figure~\ref{fig:Fitbkg}. The
121 < number of estimated background compare to the true value is shown on
94 < table~\ref{tab:FitbkgSub}.
120 > In table~\ref{tab:FullSys}, the systematics errors are expressed for
121 > each channels.
122  
123 < We assign a systematics error of 20\%.
123 > \begin{table}[!tb]
124 > \begin{center}
125 > \begin{tabular}{|l|c|c|} \hline
126 > Channels   &   Cross Section     & Signficance \\ \hline
127 > 3e  &  +9.3\% / - 9.2\%  +10\% = +13.7\% /  -13.6\%  &  +9.3\% / - 9.2\%         \\
128 > 2e1$\mu$  & +8.7\% / - 8.5\% +10\% = +13.3\% / -13.1\% &  +8.7\% / - 8.5\%         \\
129 > 1e2$\mu$  & +7.6\% / - 7.4\% +10\% = +12.7\% / -12.4\% &  +7.6\% / - 7.4\%         \\
130 > 3$\mu$  &  +6.7\% / - 6.5\% +10\% =  +12.0\% / -11.9\% &  +6.7\% / - 6.5\%         \\\hline
131 > \end{tabular}
132  
133 + \end{center}
134 + \caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 300 \invpb of integrated luminosity. These systematics do not include the background substraction.}
135 + \label{tab:FullSys}
136 + \end{table}
137  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines