ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.4 by beaucero, Sun Jun 22 12:57:45 2008 UTC vs.
Revision 1.20 by ymaravin, Fri Aug 8 00:05:00 2008 UTC

# Line 1 | Line 1
1 < In this section, we will assign systematics errors to this
2 < analysis. The assignement of systematics is expected to be
3 < conservatives.
4 <
5 < \subsection{Experimental Systematics}
6 <
7 < The experimental systematics errors expected that will affect the
8 < signal and standard model background are:
1 > \section{Systematic uncertainties}
2 > \label{sec:systematic}
3 > In this section, we estimate systematics uncertainties of the methods
4 > used in this analysis. We follow the rule of making conservative estimates
5 > throughout this section.
6 >
7 > The sources of systematic uncertainties due to modeling of trigger,
8 > reconstruction, PDF, and luminosity are described below
9 >
10   \begin{itemize}
11 < \item For trigger selection, a systematics of 1\% is assigned. Even
12 < though the efficiency of the signal is greater than 99\%, the trigger
13 < path used for both muons and electron expect the leptons to be
14 < isolated. As the isolation depends on the occupancy of the events,
15 < the alignment of the tracker (when considering tracker isolation
16 < variables) and noise in the calorimeters (when considering a
17 < calorimetric isolation), this value is expected to be conservative.
18 <
19 < \item 2\% error is assigned on electron/muons reconstruction. Both of
20 < them are link to alignment of the track in order to reconstruct the
21 < leptons. A systematics of 2\% is assigned for the determination of
22 < the charge of the electron candidate while 1\% for the muon as the
23 < electron problem is coming from the high probability of emission of
24 < photons.
11 > \item {\it Trigger}: the trigger path used to select four categories
12 > require leptons to be isolated. Though, the isolation criteria
13 > depends on the occupancy of the sub-detectors, the alignment of the
14 > tracker (when considering tracker isolation variables), and noise in
15 > the calorimeters (when considering a calorimetric isolation), the
16 > trigger efficiency is expected to be around 99\%, and therefore, a
17 > systematic uncertainty is conservatively estimated as 1\%. From the
18 > current analysis of $Z\rightarrow l^+l^-$ in
19 > CMS~\cite{Zmumu}~\cite{Zee}, the number of \Z events is estimated of the
20 > order of 50k per 100 pb$^{-1}$ of data analyzed. To determine the
21 > trigger efficiency ``tag-and-probe'' method~\cite{TP} will be used.
22 >
23 > \item {\it Reconstruction}: we assign 2\% systematic uncertainty per
24 > lepton due to initial tracker alignment which is of paramount
25 > importance to reconstruct leptons, 2\% and 1\% is assigned for the
26 > determination of the charge of the electron and muon candidates,
27 > respectively. We assigned a larger electron charge identification
28 > uncertainty due to much stronger Bremsstrahlung energy loss which
29 > makes the charge identification more difficult. The mis-measurement of
30 > the charge is of the order of 2\% in CMSSW\_1\_6\_7 release for
31 > electron. The estimation of the fraction with data will be done by
32 > looking at the \Z peak without opposite charge requirement. Then
33 > number of events within the \Z mass windows asking for two leptons of
34 > same sign will give us a estimate of the fraction of mis-measured sign
35 > leptons.
36 >  
37 > \item {\it Lepton identification}: we assign 4\% of systematic
38 > uncertainty due to efficiency measurement from early data using
39 > ``tag-and-probe'' method and 2\% for that for a muon. Additionally we
40 > assign a systematic uncertainty on lepton energy scale of 2\% per
41 > lepton. The leptons scale will be established using the \Z mass peak.
42 >
43 > \item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription
44 > described in~\cite{OldNote}. The uncertainty is found to be
45 > $$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$
46  
47 < \item A systematics of 1\% will be assigned for the measurement of
26 < the lepton energy.
27 <
28 < \item 4\% of systematics are considered for the electron
29 < identification, 2\% for the muon case.
47 > \item {\it Luminosity}: we estimate luminosity uncertainty of 10\%.
48   \end{itemize}
49  
50 < The PDF uncertainties on the signal has been determined in~\cite{OldNote}.
33 < The uncertainty was found to be:
34 < \begin{equation}
35 < \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\%
36 < \end{equation}
37 <
38 < The luminosity error is expected to be 10\%.
39 <
40 < The table~\ref{tab:sys} resume all systematics considered.
50 > The systematic uncertainties are summarized in Table~\ref{tab:sys}.
51  
52   \begin{table}[!tb]
53   \begin{center}
54 < \begin{tabular}{|l|c|c|} \hline
55 < Systematics Source (in \%)   &   Cross Section     & Signficance \\ \hline
56 < Luminosity  &   10.0   &  -         \\
57 < Trigger & 1.0 & 1.0\\
58 < Lepton Reconstruction & 2.0 & 2.0\\
59 < Electron Charge Determination &2.0& 2.0\\
60 < Muon Charge Determination &1.0& 1.0\\
61 < Lepton Energy Scale& 1.0& 1.0\\
62 < Electron Identification& 4.0 &4.0\\
63 < Muon Identification& 2.0 &2.0\\
64 < PDF Uncertainties& - & + 3.9\\
65 < &  & - 3.5 \\ \hline
54 > \begin{tabular}{|l|c|} \hline
55 > Source   &   Systematic uncertainty,\% \\ \hline
56 > Luminosity                      &   10.0        \\
57 > Trigger                         &    1.0        \\
58 > Lepton reconstruction           &    2.0        \\
59 > Electron charge determination   &    2.0        \\
60 > Muon charge determination       &    1.0        \\
61 > Lepton energy scale             &    1.0        \\
62 > Electron identification         &    4.0        \\
63 > Muon identification             &    2.0        \\
64 > PDF uncertainties               &    4.0        \\
65 > $M_{T}(W)$ requirement          &   10.0        \\ \hline
66 >
67   \end{tabular}
68  
69   \end{center}
70 < \caption{Systematics in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity.}
70 > \caption{Systematic uncertainties for $pp\rightarrow \WZ$ process
71 > estimated for a scenario of 300~\invpb of integrated luminosity data sample.}
72   \label{tab:sys}
73   \end{table}
74  
75  
76 < \subsection{Background Substraction Systematics}
76 > We assign 100\% systematic uncertainty on the instrumental backgrounds without
77 > genuine \Z boson. This correspond to 7\% effective systematic uncertainty on the final result.
78  
79 < Two methods will be used to substract the different background. The
80 < main background is the production $Z+jets$. Such background can be
81 < estimated using data as presented in section~\ref{sec:SignalExt}. For
69 < the $t\bar{t}$ background, we can use safely the side band around the
70 < $Z$ mass in order to evaluate it.
71 <
72 < If we consider an error of xx\% on the fake rate and an error of xx\%
73 < on the efficiency on signal to go from loose to tight criteria, we can
74 < calculate the error on the estimated background as follow:
79 > The systematic uncertainty on the number of the genuine \Z boson background
80 > events $\Delta N_j^t$ estimated using the matrix method described in Section~\ref{sec:D0Matrix}
81 > is calculated as
82   \begin{equation}
83 < \Delta N_j ^{t} = \frac{\sqrt{(p[N_{t} - p(N_{l}+N_{t})])^2 \times \Delta \epsilon^2
84 < +(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]^2 \times \Delta p^2
85 < + (p\epsilon)^2 \times N_{l} + [p(\epsilon -1 )]^2 \times N_{t}}}{\epsilon - p}
79 < %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
80 < %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
81 < %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
83 > \left(\Delta N_j ^{t}\right)^2 = \left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \Delta \epsilon^2
84 > +\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \Delta p^2
85 > + \frac{p^2\left(\epsilon^2\Delta N_{l}^2 -  \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2},
86   \end{equation}
83 where $N_{t}$ and $N_{l}$ represents respectivement the number of
84 events in the tight sample and in the loose sample and if they are
85 greater than 25.$\epsilon$ represent efficiency for a loose electron
86 to pass the tight criteria, $\Delta \epsilon$ the error on this
87 value.$p$ gives the probability for a fake loose electron to pass also
88 the tight criteria and $\Delta p$ its error.
87  
88 <
89 <
90 < An example of the method is given on figure~\ref{fig:Fitbkg}. The
91 < number of estimated background compare to the true value is shown on
92 < table~\ref{tab:FitbkgSub}.
93 <
94 < We assign a systematics error of 20\%.
95 <
96 <
97 < \subsection{Summary of Systematics}
98 <
99 < In table~\ref{tab:FullSys}, the systematics errors are expressed for
102 < each channels.
88 > where $N_t$ and $N_l$ are the numbers of observed events in tight and loose samples
89 > after the \ZZ and \Z$\gamma$ backgrounds have been subtracted. $\Delta N_t$ and $\Delta N_l$
90 > are the systematic uncertainties associated with this subtraction.  We take those as
91 > 100\% of the estimated physics background from the Monte Carlo simulation. Finally,
92 > $\epsilon$ and $p$ are genuine and misidentified ``loose'' lepton efficiency to
93 > satisfy ``tight'' requirements.
94 >
95 > We summarize full systematic uncertainties in Table~\ref{tab:FullSys} for each
96 > individual signature. The systematic uncertainty is smaller than statistical uncertainty
97 > which is roughly 30\% for each channel. Improvement in understanding of the MET,
98 > better measurement of the $p_{fake}$ allow to decrease the overall systematic uncertainty
99 > with larger data sample.
100  
101   \begin{table}[!tb]
102   \begin{center}
103 < \begin{tabular}{|l|c|c|} \hline
104 < Channels   &   Cross Section     & Signficance \\ \hline
105 < 3e  &  8.4\% +10\% = 13.1\%  &  +9.3\% / - 9.2\%         \\
106 < 2e1$\mu$  & 7.7\% +10\% = 12.6\%  &  +8.7\% / - 8.5\%         \\
107 < 1e2$\mu$  &  6.5\% +10\% = 11.9\%  &  +7.6\% / - 7.4\%         \\
108 < 3$\mu$  &  5.5\% +10\% = 11.4\%  &  +6.7\% / - 6.5\%         \\\hline
103 > \begin{tabular}{|l|c|c|c|} \hline
104 > Channels        &  Modeling, \% &  Background estimation, \%    & Total, \%     \\ \hline
105 > $3e$            &  17           &  13                           & 21            \\
106 > $2e1\mu$        &  17           &  11                           & 20            \\
107 > $2\mu1e$        &  16           &  15                           & 22            \\
108 > $3\mu$          &  16           &  10                           & 19            \\ \hline
109   \end{tabular}
110  
111   \end{center}
112 < \caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity. These systematics do not include the background substraction.}
112 > \caption{Total systematic uncertainty for identification of $pp\rightarrow WZ$ production.}
113   \label{tab:FullSys}
114   \end{table}
115  
119
120

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines