ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.1 by beaucero, Fri Jun 20 13:43:07 2008 UTC vs.
Revision 1.6 by beaucero, Sun Jun 22 23:16:31 2008 UTC

# Line 1 | Line 1
1 < - Systematics on selection\\
2 < - On Cross Section for MC\\
3 < - On D0Matrix method\\
1 > In this section, we will assign systematics errors to this
2 > analysis. The assignement of systematics is expected to be
3 > conservative.
4 >
5 > \subsection{Experimental Systematics}
6 >
7 > The experimental systematics errors expected that will affect the
8 > signal and standard model background are:
9 > \begin{itemize}
10 > \item For trigger selection, a systematics of 1\% is assigned. Even
11 > though the efficiency of the signal is greater than 99\%, the trigger
12 > path used for both muons and electron expect the leptons to be
13 > isolated. As the isolation depends on the occupancy of the events,
14 > the alignment of the tracker (when considering tracker isolation
15 > variables) and noise in the calorimeters (when considering a
16 > calorimetric isolation), this value is expected to be conservative.
17 >
18 > \item 2\% error is assigned on electron/muons reconstruction. Both of
19 > them are link to alignment of the track in order to reconstruct the
20 > leptons. A systematics of 2\% is assigned for the determination of
21 > the charge of the electron candidate while 1\% for the muon as the
22 > electron problem is coming from the high probability of emission of
23 > photons.
24 >
25 > \item A systematics of 1\% will be assigned for the measurement of
26 > the lepton energy.
27 >
28 > \item 4\% of systematics are considered for the electron
29 > identification, 2\% for the muon case.
30 > \end{itemize}
31 >
32 > The PDF uncertainties on the signal has been determined in~\cite{OldNote}.
33 > The uncertainty was found to be:
34 > \begin{equation}
35 > \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\%
36 > \end{equation}
37 >
38 > The luminosity error is expected to be 10\%.
39 >
40 > The table~\ref{tab:sys} resume all systematics considered.
41 >
42 > \begin{table}[!tb]
43 > \begin{center}
44 > \begin{tabular}{|l|c|c|} \hline
45 > Systematics Source (in \%)   &   Cross Section     & Signficance \\ \hline
46 > Luminosity  &   10.0   &  -         \\
47 > Trigger & 1.0 & 1.0\\
48 > Lepton Reconstruction & 2.0 & 2.0\\
49 > Electron Charge Determination &2.0& 2.0\\
50 > Muon Charge Determination &1.0& 1.0\\
51 > Lepton Energy Scale& 1.0& 1.0\\
52 > Electron Identification& 4.0 &4.0\\
53 > Muon Identification& 2.0 &2.0\\
54 > PDF Uncertainties& - & + 3.9\\
55 > &  & - 3.5 \\ \hline
56 > \end{tabular}
57 >
58 > \end{center}
59 > \caption{Systematics in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity.}
60 > \label{tab:sys}
61 > \end{table}
62 >
63 >
64 > \subsection{Background Substraction Systematics}
65 >
66 > We present here, the result for the case where the $W$ is decaying via
67 > an electron.
68 >
69 > Two steps will be used to substract the different background: first,
70 > the non peaking background should be substracted, then the background
71 > $Z+jets$ will be determine using the method described
72 > in~\ref{sec:D0Matrix}.
73 >
74 > From the fit, we will consider a systematics error of 10\%.
75 >
76 > If we consider an error of 5\% on the fake rate and an error of 2\%
77 > on the efficiency on signal to go from loose to tight criteria, we can
78 > calculate the error on the estimated background as follow:
79 > \begin{equation}
80 > \Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2
81 > +(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2
82 > + (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2}
83 > %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
84 > %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
85 > %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
86 > \end{equation}
87 > where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
88 > respectivement the number of events in the tight sample and in the
89 > loose sample and their errors.$\epsilon$ represent efficiency for a
90 > loose electron to pass the tight criteria, $\Delta \epsilon$ the error
91 > on this value.$p$ gives the probability for a fake loose electron to
92 > pass also the tight criteria and $\Delta p$ its error.
93 >
94 > The overall error from the background substraction is 18\%.
95 >
96 > \subsection{Summary of Systematics}
97 >
98 > In table~\ref{tab:FullSys}, the systematics errors are expressed for
99 > each channels.
100 >
101 > \begin{table}[!tb]
102 > \begin{center}
103 > \begin{tabular}{|l|c|c|} \hline
104 > Channels   &   Cross Section     & Signficance \\ \hline
105 > 3e  &  8.4\% +10\% = 13.1\%  &  +9.3\% / - 9.2\%         \\
106 > 2e1$\mu$  & 7.7\% +10\% = 12.6\%  &  +8.7\% / - 8.5\%         \\
107 > 1e2$\mu$  &  6.5\% +10\% = 11.9\%  &  +7.6\% / - 7.4\%         \\
108 > 3$\mu$  &  5.5\% +10\% = 11.4\%  &  +6.7\% / - 6.5\%         \\\hline
109 > \end{tabular}
110 >
111 > \end{center}
112 > \caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity. These systematics do not include the background substraction.}
113 > \label{tab:FullSys}
114 > \end{table}
115 >
116 > \subsection{Background Substraction}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines