1 |
|
In this section, we will assign systematics errors to this |
2 |
|
analysis. The assignement of systematics is expected to be |
3 |
< |
conservatives. |
3 |
> |
conservative. |
4 |
|
|
5 |
|
\subsection{Experimental Systematics} |
6 |
|
|
15 |
|
variables) and noise in the calorimeters (when considering a |
16 |
|
calorimetric isolation), this value is expected to be conservative. |
17 |
|
|
18 |
< |
\item 3\% error is assigned on electron/muons reconstruction. Both of |
18 |
> |
\item 2\% error is assigned on electron/muons reconstruction. Both of |
19 |
|
them are link to alignment of the track in order to reconstruct the |
20 |
|
leptons. A systematics of 2\% is assigned for the determination of |
21 |
|
the charge of the electron candidate while 1\% for the muon as the |
32 |
|
The PDF uncertainties on the signal has been determined in~\cite{OldNote}. |
33 |
|
The uncertainty was found to be: |
34 |
|
\begin{equation} |
35 |
< |
\Delta_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta_- ^{tot} = 3.5\% |
35 |
> |
\Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% |
36 |
|
\end{equation} |
37 |
|
|
38 |
|
The luminosity error is expected to be 10\%. |
39 |
|
|
40 |
|
The table~\ref{tab:sys} resume all systematics considered. |
41 |
|
|
42 |
< |
\begin{table}[!] |
42 |
> |
\begin{table}[!tb] |
43 |
|
\begin{center} |
44 |
|
\begin{tabular}{|l|c|c|} \hline |
45 |
|
Systematics Source (in \%) & Cross Section & Signficance \\ \hline |
46 |
|
Luminosity & 10.0 & - \\ |
47 |
|
Trigger & 1.0 & 1.0\\ |
48 |
< |
Lepton Reconstruction & 3.0 & 3.0\\ |
48 |
> |
Lepton Reconstruction & 2.0 & 2.0\\ |
49 |
|
Electron Charge Determination &2.0& 2.0\\ |
50 |
|
Muon Charge Determination &1.0& 1.0\\ |
51 |
|
Lepton Energy Scale& 1.0& 1.0\\ |
63 |
|
|
64 |
|
\subsection{Background Substraction Systematics} |
65 |
|
|
66 |
< |
Two methods will be used to substract the different background. The |
67 |
< |
main background is the production $Z+jets$. Such background can be |
68 |
< |
estimated using data as presented in section~\ref{sec:SignalExt}. For |
69 |
< |
the $t\bar{t}$ background, we can use safely the side band around the |
70 |
< |
$Z$ mass in order to evaluate it. |
66 |
> |
We present here, the result for the case where the $W$ is decaying via |
67 |
> |
an electron. |
68 |
> |
|
69 |
> |
Two steps will be used to substract the different background: first, |
70 |
> |
the non peaking background should be substracted, then the background |
71 |
> |
$Z+jets$ will be determine using the method described |
72 |
> |
in~\ref{sec:D0Matrix}. |
73 |
> |
|
74 |
> |
From the fit, we will consider a systematics error of 10\%. |
75 |
> |
|
76 |
> |
If we consider an error of 5\% on the fake rate and an error of 2\% |
77 |
> |
on the efficiency on signal to go from loose to tight criteria, we can |
78 |
> |
calculate the error on the estimated background as follow: |
79 |
> |
\begin{equation} |
80 |
> |
\Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2 |
81 |
> |
+(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2 |
82 |
> |
+ (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2} |
83 |
> |
%\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2 |
84 |
> |
%+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2 |
85 |
> |
%+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}} |
86 |
> |
\end{equation} |
87 |
> |
where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents |
88 |
> |
respectivement the number of events in the tight sample and in the |
89 |
> |
loose sample and their errors.$\epsilon$ represent efficiency for a |
90 |
> |
loose electron to pass the tight criteria, $\Delta \epsilon$ the error |
91 |
> |
on this value.$p$ gives the probability for a fake loose electron to |
92 |
> |
pass also the tight criteria and $\Delta p$ its error. |
93 |
> |
|
94 |
> |
The overall error from the background substraction is 18\%. |
95 |
> |
|
96 |
> |
\subsection{Summary of Systematics} |
97 |
> |
|
98 |
> |
In table~\ref{tab:FullSys}, the systematics errors are expressed for |
99 |
> |
each channels. |
100 |
> |
|
101 |
> |
\begin{table}[!tb] |
102 |
> |
\begin{center} |
103 |
> |
\begin{tabular}{|l|c|c|} \hline |
104 |
> |
Channels & Cross Section & Signficance \\ \hline |
105 |
> |
3e & 8.4\% +10\% = 13.1\% & +9.3\% / - 9.2\% \\ |
106 |
> |
2e1$\mu$ & 7.7\% +10\% = 12.6\% & +8.7\% / - 8.5\% \\ |
107 |
> |
1e2$\mu$ & 6.5\% +10\% = 11.9\% & +7.6\% / - 7.4\% \\ |
108 |
> |
3$\mu$ & 5.5\% +10\% = 11.4\% & +6.7\% / - 6.5\% \\\hline |
109 |
> |
\end{tabular} |
110 |
> |
|
111 |
> |
\end{center} |
112 |
> |
\caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity. These systematics do not include the background substraction.} |
113 |
> |
\label{tab:FullSys} |
114 |
> |
\end{table} |
115 |
> |
|
116 |
> |
\subsection{Background Substraction} |