ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.4 by beaucero, Sun Jun 22 12:57:45 2008 UTC vs.
Revision 1.6 by beaucero, Sun Jun 22 23:16:31 2008 UTC

# Line 1 | Line 1
1   In this section, we will assign systematics errors to this
2   analysis. The assignement of systematics is expected to be
3 < conservatives.
3 > conservative.
4  
5   \subsection{Experimental Systematics}
6  
# Line 63 | Line 63 | PDF Uncertainties& - & + 3.9\\
63  
64   \subsection{Background Substraction Systematics}
65  
66 < Two methods will be used to substract the different background. The
67 < main background is the production $Z+jets$. Such background can be
68 < estimated using data as presented in section~\ref{sec:SignalExt}. For
69 < the $t\bar{t}$ background, we can use safely the side band around the
70 < $Z$ mass in order to evaluate it.
66 > We present here, the result for the case where the $W$ is decaying via
67 > an electron.
68  
69 < If we consider an error of xx\% on the fake rate and an error of xx\%
69 > Two steps will be used to substract the different background: first,
70 > the non peaking background should be substracted, then the background
71 > $Z+jets$ will be determine using the method described
72 > in~\ref{sec:D0Matrix}.
73 >
74 > From the fit, we will consider a systematics error of 10\%.
75 >
76 > If we consider an error of 5\% on the fake rate and an error of 2\%
77   on the efficiency on signal to go from loose to tight criteria, we can
78   calculate the error on the estimated background as follow:
79   \begin{equation}
80 < \Delta N_j ^{t} = \frac{\sqrt{(p[N_{t} - p(N_{l}+N_{t})])^2 \times \Delta \epsilon^2
81 < +(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]^2 \times \Delta p^2
82 < + (p\epsilon)^2 \times N_{l} + [p(\epsilon -1 )]^2 \times N_{t}}}{\epsilon - p}
80 > \Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2
81 > +(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2
82 > + (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2}
83   %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
84   %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
85   %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
86   \end{equation}
87 < where $N_{t}$ and $N_{l}$ represents respectivement the number of
88 < events in the tight sample and in the loose sample and if they are
89 < greater than 25.$\epsilon$ represent efficiency for a loose electron
90 < to pass the tight criteria, $\Delta \epsilon$ the error on this
91 < value.$p$ gives the probability for a fake loose electron to pass also
92 < the tight criteria and $\Delta p$ its error.
89 <
90 <
91 <
92 < An example of the method is given on figure~\ref{fig:Fitbkg}. The
93 < number of estimated background compare to the true value is shown on
94 < table~\ref{tab:FitbkgSub}.
95 <
96 < We assign a systematics error of 20\%.
87 > where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
88 > respectivement the number of events in the tight sample and in the
89 > loose sample and their errors.$\epsilon$ represent efficiency for a
90 > loose electron to pass the tight criteria, $\Delta \epsilon$ the error
91 > on this value.$p$ gives the probability for a fake loose electron to
92 > pass also the tight criteria and $\Delta p$ its error.
93  
94 + The overall error from the background substraction is 18\%.
95  
96   \subsection{Summary of Systematics}
97  
# Line 116 | Line 113 | Channels   &   Cross Section     & Signf
113   \label{tab:FullSys}
114   \end{table}
115  
116 <
120 <
116 > \subsection{Background Substraction}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines