ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/Sys.tex (file contents):
Revision 1.7 by ymaravin, Mon Jun 23 14:57:36 2008 UTC vs.
Revision 1.9 by beaucero, Tue Jun 24 16:10:28 2008 UTC

# Line 77 | Line 77 | the non peaking background should be sub
77   $Z+jets$ will be determine using the method described
78   in~\ref{sec:D0Matrix}.
79  
80 < From the fit, we will consider a systematics error of 10\%.
80 > From the fit, we will consider a systematics error of  XXX. %10\%.
81  
82 < If we consider an error of 5\% on the fake rate and an error of 2\%
82 > If we consider an error of XXX % 5\%
83 > on the fake rate and an error of XXX % 2\%
84   on the efficiency on signal to go from loose to tight criteria, we can
85   calculate the error on the estimated background as follow:
86   \begin{equation}
87 < \Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2
88 < +(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2
89 < + (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2}
89 < %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
90 < %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
91 < %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
87 > \Delta N_j ^{t} = \sqrt{\left(\frac{p\left(N_t - pN_l\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta \epsilon^2
88 > +\left(\frac{\epsilon\left(\epsilon N_{l}-N_{t}\right)}{\left(\epsilon -p\right)^2}\right)^2 \times \Delta p^2
89 > + \frac{p^2\left(\epsilon^2\Delta N_{l}^2 -  \Delta N_{t}^2\left(2\epsilon -1\right)\right)}{\left(\epsilon -p\right)^2}}
90   \end{equation}
91   where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
92   respectivement the number of events in the tight sample and in the
# Line 97 | Line 95 | loose electron to pass the tight criteri
95   on this value.$p$ gives the probability for a fake loose electron to
96   pass also the tight criteria and $\Delta p$ its error.
97  
98 < The overall error from the background substraction is 18\%.
98 > The overall error from the background substraction is XXX %18\%.
99  
100   \subsection{Summary of Systematics}
101  
# Line 119 | Line 117 | Channels   &   Cross Section     & Signf
117   \label{tab:FullSys}
118   \end{table}
119  
122 \subsection{Background Substraction}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines