ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/Sys.tex
Revision: 1.8
Committed: Mon Jun 23 18:17:01 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
CVS Tags: pre_release_23Jul08
Changes since 1.7: +4 -3 lines
Log Message:
commenting stuff that is not ready for first pre-release

File Contents

# Content
1 In this section, we estimate systematics uncertainties of the methods
2 used in this analysis. We follow the rule of making conservative estimates
3 throughout this section.
4
5 \subsection{Modeling systematics}
6
7 The sources of systematic uncertainties due to modeling of trigger,
8 reconstruction, PDF, and luminosity are described below
9
10 \begin{itemize}
11 \item {\it Trigger}: the trigger path used to select four categories require
12 leptons to be isolated. Though, the isolation criteria depends on the
13 occupancy of the sub-detectors, the alignment of the tracker (when
14 considering tracker isolation variables), and noise in the calorimeters (when
15 considering a calorimetric isolation), the trigger efficiency is
16 expected to be around 99\%, and therefore, a systematic uncertainty
17 is conservatively estimated as 1\%.
18
19 \item {\it Reconstruction}: we assign 2\% systematic uncertainty per lepton
20 due to initial tracker alignment which is of paramount importance to
21 reconstruct leptons, 2\% and 1\% is assigned for the determination
22 of the charge of the electron and muon candidates, respectively. We assigned
23 a larger electron charge identification uncertainty due to much stronger
24 Bremsstrahlung energy loss which makes the charge identification more
25 difficult.
26
27 \item {\it Lepton identification}: we assign 4\% of systematic uncertainty
28 due to efficiency measurement from early data using ``tag-and-probe''
29 method and 2\% for that for a muon. Additionally we assign a systematic
30 uncertainty on lepton energy scale of 2\% per lepton.
31
32 \item {\it PDF uncertainties}: we estimate PDF uncertainties following prescription
33 described in~\cite{OldNote}. The uncertainty is found to be
34 $$ \Delta \sigma_+ ^{tot} = 3.9\% \hspace{0.9cm} \Delta \sigma_- ^{tot} = 3.5\% $$.
35
36 \item {\it Luminosity}: we estimate luminosity uncertainty of 10\%.
37 \end{itemize}
38
39 The systematic uncertainties are summarized in Table~\ref{tab:sys}.
40
41 \begin{table}[!tb]
42 \begin{center}
43 \begin{tabular}{|l|c|c|} \hline
44 & \multicolumn{2}{c|}{Systematic uncertainty} \\
45 Source & on the cross section,\% & on the signficance,\% \\ \hline
46 Luminosity & 10.0 & - \\
47 Trigger & 1.0 & 1.0\\
48 Lepton reconstruction & 2.0 & 2.0\\
49 Electron charge determination &2.0& 2.0\\
50 Muon charge determination &1.0& 1.0\\
51 Lepton energy scale& 1.0& 1.0\\
52 Electron identification& 4.0 &4.0\\
53 Muon identification& 2.0 &2.0\\
54 PDF uncertainties& - & + 3.9\\
55 & & - 3.5 \\ \hline
56 \end{tabular}
57
58 \end{center}
59 \caption{Systematic uncertainties for $pp\rightarrow \WZ$ cross section measurement
60 and significance estimation for 1 fb$^-1$ of integrated luminosity.}
61 \label{tab:sys}
62 \end{table}
63
64
65 \subsection{Systematic uncertainties due to background estimation method}
66
67 In the following we estimate a systematic uncertainty due to estimation
68 of background using the matrix method described in Section~\ref{sec:D0Matrix} above.
69
70
71
72 We present here, the result for the case where the $W$ is decaying via
73 an electron.
74
75 Two steps will be used to substract the different background: first,
76 the non peaking background should be substracted, then the background
77 $Z+jets$ will be determine using the method described
78 in~\ref{sec:D0Matrix}.
79
80 From the fit, we will consider a systematics error of XXX. %10\%.
81
82 If we consider an error of XXX % 5\%
83 on the fake rate and an error of XXX % 2\%
84 on the efficiency on signal to go from loose to tight criteria, we can
85 calculate the error on the estimated background as follow:
86 \begin{equation}
87 \Delta N_j ^{t} = \sqrt{(\frac{(p[N_{t} - p(N_{l}+N_{t})])}{(\epsilon -p)^2})^2 \times \Delta \epsilon^2
88 +(\frac{(\epsilon[\epsilon(N_{l}+N_{t})-N_{t}]}{(\epsilon -p)^2})^2 \times \Delta p^2
89 + (\frac{(p\epsilon)}{(\epsilon -p)})^2 \times \Delta N_{l}^2 + (\frac{[p(\epsilon -1 )]}{(\epsilon -p)})^2 \times \Delta N_{t}^2}
90 %\Delta N_j ^{tight} = \frac{\sqrt{(p_{fake}[N_{tight} - p_{fake}(N_{loose}+N_{tight})])^2 \dot \Delta \epsilon^2
91 %+(\epsilon[\epsilon(N_{loose}+N_{tight})-N_{tight}]^2 \dot \Delta p_{fake}^2
92 %+ (p_{fake}\epsilon)^2 \dot N_{loose} + [p_{fake}(\epsilon -1 )]^2 \dot N_{tight}}}{\epsilon_{tight} - p_{fake}}
93 \end{equation}
94 where $N_{t}$,$\Delta N_{t}$ and $N_{l}$,$\Delta N_{l}$ represents
95 respectivement the number of events in the tight sample and in the
96 loose sample and their errors.$\epsilon$ represent efficiency for a
97 loose electron to pass the tight criteria, $\Delta \epsilon$ the error
98 on this value.$p$ gives the probability for a fake loose electron to
99 pass also the tight criteria and $\Delta p$ its error.
100
101 The overall error from the background substraction is XXX %18\%.
102
103 \subsection{Summary of Systematics}
104
105 In table~\ref{tab:FullSys}, the systematics errors are expressed for
106 each channels.
107
108 \begin{table}[!tb]
109 \begin{center}
110 \begin{tabular}{|l|c|c|} \hline
111 Channels & Cross Section & Signficance \\ \hline
112 3e & 8.4\% +10\% = 13.1\% & +9.3\% / - 9.2\% \\
113 2e1$\mu$ & 7.7\% +10\% = 12.6\% & +8.7\% / - 8.5\% \\
114 1e2$\mu$ & 6.5\% +10\% = 11.9\% & +7.6\% / - 7.4\% \\
115 3$\mu$ & 5.5\% +10\% = 11.4\% & +6.7\% / - 6.5\% \\\hline
116 \end{tabular}
117
118 \end{center}
119 \caption{Systematics per channels in percent for $pp\rightarrow WZ$ cross section measurement and significance estimation for 1 fb$^-1$ of integrated luminosity. These systematics do not include the background substraction.}
120 \label{tab:FullSys}
121 \end{table}
122
123 \subsection{Background Substraction}