ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/samples.tex
Revision: 1.14
Committed: Fri Jun 27 23:07:57 2008 UTC (16 years, 10 months ago) by ymaravin
Content type: application/x-tex
Branch: MAIN
CVS Tags: draft0
Changes since 1.13: +56 -35 lines
Log Message:
Updated section on physics and instrumental backgrounds

File Contents

# User Rev Content
1 vuko 1.1 \section{Signal and Background Modeling}
2     \label{sec:gen}
3     \subsection{Monte Carlo generators}
4     The signal and background samples for the full detector simulation
5 vuko 1.11 are generated with the leading order (LO) event generators
6 ymaravin 1.9 {\sl PYTHIA}~\cite{Sjostrand:2003wg}, {\sl ALPGEN} and {\sl COMPHEP}.
7     To accommodate next-to-leading (NLO) effects, constant $k$-factors are applied.
8     Additionally, the cross section calculator {\sl MCFM}~\cite{Campbell:2005}
9     is used to determine the NLO differential cross section for the $\WZ$
10     production. To estimate the uncertainty on the cross-section
11     due to the choice of the PDF, we use NLO event generator
12     {\sl MC@NLO 3.1}~\cite{Frixione:2002ik} together with CTEQ6M PDF set.
13    
14     \subsection{Signal definition}
15    
16     The goal of this analysis is to study the associative production of the on-shell
17 ymaravin 1.14 $\W$ and $\Z$ bosons that decay into three leptons and a neutrino. In the
18 ymaravin 1.9 following we refer to a lepton to as either a muon or an electron, unless
19     specified otherwise. The leptonic final state $\ell^+ \ell^- \ell^\pm \nu$ also receives a
20     contribution from the $W\gamma^*$ production, where the $\gamma^*$ stands for a
21     virtual photon through the $WW\gamma$ vertex. In this analysis, we
22 ymaravin 1.10 restrict this contribution by requiring the $\ell^+\ell^-$ invariant mass to be
23 ymaravin 1.9 consistent with the nominal $\Z$ boson mass. As CMS detector has a very
24     good energy resolution for electrons and muons, the mass window
25     is set to be $\pm$ 10 GeV around 91 GeV.
26    
27 ymaravin 1.10 Using {\sl MCFM} we estimate the total NLO $\WZ$ cross-section to be
28 beaucero 1.5 \begin{equation}
29 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^+\Z; \sqrt{s}=14~{\rm TeV}) = 30.5~{\rm pb},
30 beaucero 1.5 \end{equation}
31     \begin{equation}
32 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^-\Z; \sqrt{s}=14~{\rm TeV}) = 19.1~{\rm pb}.
33 beaucero 1.5 \end{equation}
34    
35 ymaravin 1.10 The LO and NLO distributions of the \Z boson transverse momentum are
36     shown in Fig.~\ref{fig:LOvsNLO} with the case of $W^+$ on the left and $W^-$
37     on the right side. The NLO/LO ratio, $k$-factor, is also presented on the figure,
38     and it is increasing with $p_T(\Z)$. The $p_T$ dependence of the $k$-factor
39     becomes important when a proper NLO description of the $\Z$ boson transverse
40     momentum must be obtained, $e.g$ to measure the strength of the $WWZ$ coupling.
41     As the focus of this analysis is to prepare for the cross-section measurement,
42     we take a $p_{T}$-averaged value of the $k$-factor, equal to 1.84.
43 beaucero 1.5
44     \begin{figure}[!bt]
45     \begin{center}
46     \scalebox{0.8}{\includegraphics{figs/LOvsNLOZPtWminuns.eps}\includegraphics{figs/LOvsNLOZPtWplus.eps}}
47 ymaravin 1.10 \caption{$p_T(Z)$ distribution for LO (solid black histogram) and NLO (dashed black histogram)
48     in $W^-\Z$ events (left) and $W^+\Z$ events (right). The ratio NLO/LO is also given as a red
49     solid line.
50 beaucero 1.5 }
51     \label{fig:LOvsNLO}
52     \end{center}
53     \end{figure}
54 vuko 1.1
55 vuko 1.2 %# for bbll:
56     %#CS NLO ((Z/gamma*->l+l-)bb) = 830pb = 345 pb * 2.4, where:
57     %#- 345 pb is LO CS calculated with precision of ~0.15%
58     %#- 2.4 is MCMF calculated k-factor with precision ~30% (!)
59     %# 830x0.173 (== XS x eff.) = 143.59pb
60    
61    
62 ymaravin 1.10 \subsection{Signal and background Monte Carlo samples}
63    
64     The signal Monte Carlo sample is produced using {\sl PYTHIA}
65 ymaravin 1.14 generator. The decay for the \W lepton is forced to $e\nu_e$,
66 vuko 1.11 $\mu\nu_{\mu}$ or $\tau\nu_{\tau}$ final state, while the \Z decays
67 ymaravin 1.10 into electrons or muons only.
68 beaucero 1.6
69 ymaravin 1.14 The background to the \WZ final state can be divided in physics and
70     instrumental. Physics background includes the contributions from
71     either converted photons that produce isolated leptons misidentified
72     as a decay products of $\W$ or $\Z$ bosons, or genuine leptons from
73     diboson processes. The only non-negligible physics backgrounds are
74     $\Z\gamma$ and $\Z\Z$ processes officially produced with {\sl PYTHIA}
75     generator.
76    
77     The instrumental backgrounds are all include jets that are misidentified
78     as isolated leptons. These include production of $\W$ and $\Z$ bosons
79     with jets and $t\bar{t}$ processes. We summarize the instrumental background
80     processes below.
81    
82 beaucero 1.6 \begin{itemize}
83 ymaravin 1.14 \item $\Z + jets$: this background is one of the dominant to the \WZ final state. Although
84     the misidentification rate for a jet to be misidentified as a lepton is quite small, the
85     $\Z+jets$ cross-section is 35 times larger than the signal one. We use the {\sl ALPGEN}
86     generated official samples of $\Z+jet$ production Monte Carlo samples for different
87     values of the jet transverse momentum.
88     \item $t\bar{t}$: each of the top quarks decay into a $\W b$ pair producing at least two
89     leptons and two $b$-quark jets. Although this process does not have a genuine $\Z$
90     candidate and can be suppressed be a $\Z$ candidate invariant mass requirement,
91     the probability for a $b$-quark jet to decay semi-leptonically and be misidentified
92     as a lepton is higher than that from a light-quark jets. The cross-section of the $t\bar{t}$
93     production is also exceed by about 15 times the cross-section of the \WZ production.
94     Thus, this background is also one of the most dominant. We use the official $t\bar{t}$
95     samples produced with {\sl ALPGEN} generator to estimate this background.
96     \item $\Z + b\bar{b}$: this process is produced by the {\sl COMPHEP}
97     generator and have a genuine $\Z$ candidate in the final state. One of the $b$-quark
98     jets are misidentified as the third lepton from the $\W$ boson.
99     \item $\W+jets$: in this process, the \W boson produces a genuine lepton,
100     while the other two leptons are misidentified jets. As the misidentification
101     probability is low, this channel does not contribute significantly to the \WZ
102     final state. The additional \Z candidate invariant mass requirement suppresses
103     this background further. We use the officially produced sample of $\W+jets$ processes
104     for different number of jets in the final state generated by the {\sl ALPGEN}
105     generator.
106 beaucero 1.6 \end{itemize}
107 beaucero 1.5
108 ymaravin 1.14 All the samples we use in this study are a part of the CSA07 production and
109     are generated using $\mathrm{CMSSW}\_1\_4_\_6$ using the full {\sl GEANT}
110     simulation of the CMS detector. The digitization and reconstruction are
111     done using a newer $\mathrm{CMSSW}\_1\_6_\_7$ release with a
112     misalignment/miscalibration of the detector scenario expected
113     to be achieved after collection of $\sim$ 100~pb$^{-1}$ of data.
114     All {\sl ALPGEN} samples are mixed together in further referred to as to a
115 beaucero 1.7 ``Chowder soup''.
116    
117     The summary of all datasets used for signal and background is given in
118 ymaravin 1.14 Table~\ref{tab:MC}. We use the RECO production level to access to
119 beaucero 1.7 low-level detector information, such as reconstructed hits. This lets
120 ymaravin 1.14 us to use full granularity of the CMS sub-detectors to use isolation
121 beaucero 1.7 discriminants.
122    
123 ymaravin 1.14 Analysis of the samples is done using CMSSW$\_1\_6\_7$ CMS software
124     release. The information is stored in ROOT trees using a code in
125 beaucero 1.7 CVS:/UserCode/Vuko/WZAnalysis, which is based on Physics Tools candidates.
126    
127     \begin{table}[!tb]
128     %\begin{tabular}{llllll} \hline
129     %Sample & Generator & Sample name & Events & $\sigma \cdot \epsilon
130     %\cdot k$ & k-factor \\ \hline WZ & Pythia &
131     %/WZ/CMSSW\_1\_6\_7-CSA07-1195663763/RECO & 58897 & 0.585 pb & 1.92 \\
132     %$Zb\bar{b}$ & COMPHEP &
133     %/comphep-bbll/CMSSW\_1\_6\_7-CSA07-1198677426/RECO & 143.59 pb & 2.4
134     %\\ ``Chowder'' & ALPGEN &
135     %/CSA07AllEvents/CMSSW\_1\_6\_7-CSA07-Chowder-A1-PDAllEvents-ReReco-100pb/RECO
136     %& 25 M & event weights & - \\
137     \begin{tabular}{|c|c|c|c|c|} \hline
138 ymaravin 1.14 Sample & cross section, pb & Events & Dataset name \\ \hline
139     $\WZ$ & 1.12 & 59K & /WZ/CMSSW$\_1\_6\_7$-CSA07-1195663763\\ \hline
140     $\Z b\bar{b}$ & 830*0.173 (NLO) & 1.9M & /comphep-bbll/CMSSW$\_1\_6\_7$-CSA07-1198677426\\ \hline
141 beaucero 1.7 Chowder & Event Weight & $\sim$ 21M & /CSA07AllEvents/\\ & & & CMSSW$\_1\_6\_7$-CSA07-Chowder-A1-PDAllEvents-ReReco
142     -100pb\\ \hline
143 ymaravin 1.14 $\Z\Z$ inclusive & 16.1 (NLO) & $\sim$ 140k & /ZZ$\_$incl/CMSSW$\_1\_6\_7$-CSA07-1194964234/RECO\\ \hline
144     $\Z\gamma \rightarrow e^+e^-\gamma$ & 1.08 (NLO) & $\sim$125k &/Zeegamma/CMSSW$\_1\_6\_7$-CSA07-1198935518/RECO \\ \hline
145     $\Z\gamma \rightarrow \mu^+\mu^-\gamma$ & 1.08 (NLO) & $\sim$ 93k & /Zmumugamma/CMSSW$\_1\_6\_7$-CSA07-1194806860/RECO\\ \hline
146 vuko 1.2 \end{tabular}
147 beaucero 1.7 \label{tab:MC}
148 ymaravin 1.14 \caption{Monte Carlo samples used in this analysis using 100 pb$^{-1}$ scenario}
149 vuko 1.2 \end{table}
150    
151 vuko 1.1
152    
153