ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/samples.tex
Revision: 1.16
Committed: Tue Jul 15 09:37:08 2008 UTC (16 years, 9 months ago) by ymaravin
Content type: application/x-tex
Branch: MAIN
Changes since 1.15: +20 -24 lines
Log Message:
Added Zg to the list of intrumental backgrounds

File Contents

# User Rev Content
1 vuko 1.1 \section{Signal and Background Modeling}
2     \label{sec:gen}
3     \subsection{Monte Carlo generators}
4     The signal and background samples for the full detector simulation
5 vuko 1.11 are generated with the leading order (LO) event generators
6 ymaravin 1.9 {\sl PYTHIA}~\cite{Sjostrand:2003wg}, {\sl ALPGEN} and {\sl COMPHEP}.
7 ymaravin 1.16 To accommodate the next-to-leading (NLO) effects, constant $k$-factors are applied
8     except for the signal where a $p_T$-dependence has been taken into account
9     and some of the backgrounds, $e.g.$ $t\bar{t}$, $W+jets$, and $Z+jets$ samples,
10     officially produced with NLO effects taken into account.
11    
12     The $p_T$-dependent $k$-factor for the signal is estimated using
13     the NLO cross section calculator {\sl MCFM}~\cite{Campbell:2005}.
14     We estimate the PDF uncertainty on the cross-section using
15     {\sl MC@NLO 3.1}~\cite{Frixione:2002ik} NLO event generator
16     together with CTEQ6M PDF set.
17 ymaravin 1.9
18     \subsection{Signal definition}
19     The goal of this analysis is to study the associative production of the on-shell
20 ymaravin 1.14 $\W$ and $\Z$ bosons that decay into three leptons and a neutrino. In the
21 ymaravin 1.9 following we refer to a lepton to as either a muon or an electron, unless
22 ymaravin 1.16 specified otherwise.
23 ymaravin 1.9
24 ymaravin 1.10 Using {\sl MCFM} we estimate the total NLO $\WZ$ cross-section to be
25 beaucero 1.5 \begin{equation}
26 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^+\Z; \sqrt{s}=14~{\rm TeV}) = 30.5~{\rm pb},
27 beaucero 1.5 \end{equation}
28     \begin{equation}
29 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^-\Z; \sqrt{s}=14~{\rm TeV}) = 19.1~{\rm pb}.
30 beaucero 1.5 \end{equation}
31    
32 ymaravin 1.10 The LO and NLO distributions of the \Z boson transverse momentum are
33     shown in Fig.~\ref{fig:LOvsNLO} with the case of $W^+$ on the left and $W^-$
34     on the right side. The NLO/LO ratio, $k$-factor, is also presented on the figure,
35 ymaravin 1.15 and it is increasing with $p_T(\Z)$. We take into account the $p_T$ dependence
36     by re-weighting the LO Monte Carlo simulation as a function of the $p_T(\Z)$.
37     %
38     %
39     %The $p_T$ dependence of the $k$-factor
40     %becomes important when a proper NLO description of the $\Z$ boson transverse
41     %momentum must be obtained, $e.g$ to measure the strength of the $WWZ$ coupling.
42     %As the focus of this analysis is to prepare for the cross-section measurement,
43     %we take a $p_{T}$-averaged value of the $k$-factor, equal to 1.84.
44 beaucero 1.5
45     \begin{figure}[!bt]
46     \begin{center}
47     \scalebox{0.8}{\includegraphics{figs/LOvsNLOZPtWminuns.eps}\includegraphics{figs/LOvsNLOZPtWplus.eps}}
48 ymaravin 1.10 \caption{$p_T(Z)$ distribution for LO (solid black histogram) and NLO (dashed black histogram)
49     in $W^-\Z$ events (left) and $W^+\Z$ events (right). The ratio NLO/LO is also given as a red
50     solid line.
51 beaucero 1.5 }
52     \label{fig:LOvsNLO}
53     \end{center}
54     \end{figure}
55 vuko 1.1
56 vuko 1.2 %# for bbll:
57     %#CS NLO ((Z/gamma*->l+l-)bb) = 830pb = 345 pb * 2.4, where:
58     %#- 345 pb is LO CS calculated with precision of ~0.15%
59     %#- 2.4 is MCMF calculated k-factor with precision ~30% (!)
60     %# 830x0.173 (== XS x eff.) = 143.59pb
61    
62    
63 ymaravin 1.10 \subsection{Signal and background Monte Carlo samples}
64    
65     The signal Monte Carlo sample is produced using {\sl PYTHIA}
66 ymaravin 1.14 generator. The decay for the \W lepton is forced to $e\nu_e$,
67 vuko 1.11 $\mu\nu_{\mu}$ or $\tau\nu_{\tau}$ final state, while the \Z decays
68 ymaravin 1.10 into electrons or muons only.
69 beaucero 1.6
70 ymaravin 1.14 The background to the \WZ final state can be divided in physics and
71 ymaravin 1.16 instrumental. The only physics background is from $Z^0Z^0$ production
72     where one of the leptons is either mis-reconstructed or lost.
73 ymaravin 1.14
74 ymaravin 1.16 The instrumental backgrounds are all due to mis-identified electron candidates
75     from either jets or photons. These backgrounds include production of $\W$ and $\Z$ bosons
76     with jets and $t\bar{t}$ processes and $Z^0\gamma$ process. The background from $W\gamma$
77     production, where the $\gamma$ converts and produces a dielectron system is neglected
78     due to a requirement on the $\ell^+\ell^-$ invariant mass to be consistent with the nominal \Z boson mass.
79 ymaravin 1.14
80 ymaravin 1.16 All non-negligible instrumental backgrounds are summarized below.
81 beaucero 1.6 \begin{itemize}
82 ymaravin 1.14 \item $\Z + jets$: this background is one of the dominant to the \WZ final state. Although
83     the misidentification rate for a jet to be misidentified as a lepton is quite small, the
84     $\Z+jets$ cross-section is 35 times larger than the signal one. We use the {\sl ALPGEN}
85     generated official samples of $\Z+jet$ production Monte Carlo samples for different
86     values of the jet transverse momentum.
87     \item $t\bar{t}$: each of the top quarks decay into a $\W b$ pair producing at least two
88     leptons and two $b$-quark jets. Although this process does not have a genuine $\Z$
89     candidate and can be suppressed be a $\Z$ candidate invariant mass requirement,
90     the probability for a $b$-quark jet to decay semi-leptonically and be misidentified
91     as a lepton is higher than that from a light-quark jets. The cross-section of the $t\bar{t}$
92     production is also exceed by about 15 times the cross-section of the \WZ production.
93     Thus, this background is also one of the most dominant. We use the official $t\bar{t}$
94     samples produced with {\sl ALPGEN} generator to estimate this background.
95     \item $\Z + b\bar{b}$: this process is produced by the {\sl COMPHEP}
96     generator and have a genuine $\Z$ candidate in the final state. One of the $b$-quark
97     jets are misidentified as the third lepton from the $\W$ boson.
98     \item $\W+jets$: in this process, the \W boson produces a genuine lepton,
99     while the other two leptons are misidentified jets. As the misidentification
100     probability is low, this channel does not contribute significantly to the \WZ
101     final state. The additional \Z candidate invariant mass requirement suppresses
102     this background further. We use the officially produced sample of $\W+jets$ processes
103     for different number of jets in the final state generated by the {\sl ALPGEN}
104     generator.
105 ymaravin 1.16 \item $Z^0\gamma$: this process is calculated with {\sl PYTHIA}.
106 beaucero 1.6 \end{itemize}
107 beaucero 1.5
108 ymaravin 1.14 All the samples we use in this study are a part of the CSA07 production and
109     are generated using $\mathrm{CMSSW}\_1\_4_\_6$ using the full {\sl GEANT}
110     simulation of the CMS detector. The digitization and reconstruction are
111     done using a newer $\mathrm{CMSSW}\_1\_6_\_7$ release with a
112     misalignment/miscalibration of the detector scenario expected
113     to be achieved after collection of $\sim$ 100~pb$^{-1}$ of data.
114     All {\sl ALPGEN} samples are mixed together in further referred to as to a
115 beaucero 1.7 ``Chowder soup''.
116    
117     The summary of all datasets used for signal and background is given in
118 ymaravin 1.14 Table~\ref{tab:MC}. We use the RECO production level to access to
119 beaucero 1.7 low-level detector information, such as reconstructed hits. This lets
120 ymaravin 1.14 us to use full granularity of the CMS sub-detectors to use isolation
121 beaucero 1.7 discriminants.
122    
123 ymaravin 1.14 Analysis of the samples is done using CMSSW$\_1\_6\_7$ CMS software
124     release. The information is stored in ROOT trees using a code in
125 beaucero 1.7 CVS:/UserCode/Vuko/WZAnalysis, which is based on Physics Tools candidates.
126    
127     \begin{table}[!tb]
128     %\begin{tabular}{llllll} \hline
129     %Sample & Generator & Sample name & Events & $\sigma \cdot \epsilon
130     %\cdot k$ & k-factor \\ \hline WZ & Pythia &
131     %/WZ/CMSSW\_1\_6\_7-CSA07-1195663763/RECO & 58897 & 0.585 pb & 1.92 \\
132     %$Zb\bar{b}$ & COMPHEP &
133     %/comphep-bbll/CMSSW\_1\_6\_7-CSA07-1198677426/RECO & 143.59 pb & 2.4
134     %\\ ``Chowder'' & ALPGEN &
135     %/CSA07AllEvents/CMSSW\_1\_6\_7-CSA07-Chowder-A1-PDAllEvents-ReReco-100pb/RECO
136     %& 25 M & event weights & - \\
137     \begin{tabular}{|c|c|c|c|c|} \hline
138 ymaravin 1.14 Sample & cross section, pb & Events & Dataset name \\ \hline
139     $\WZ$ & 1.12 & 59K & /WZ/CMSSW$\_1\_6\_7$-CSA07-1195663763\\ \hline
140     $\Z b\bar{b}$ & 830*0.173 (NLO) & 1.9M & /comphep-bbll/CMSSW$\_1\_6\_7$-CSA07-1198677426\\ \hline
141 beaucero 1.7 Chowder & Event Weight & $\sim$ 21M & /CSA07AllEvents/\\ & & & CMSSW$\_1\_6\_7$-CSA07-Chowder-A1-PDAllEvents-ReReco
142     -100pb\\ \hline
143 ymaravin 1.14 $\Z\Z$ inclusive & 16.1 (NLO) & $\sim$ 140k & /ZZ$\_$incl/CMSSW$\_1\_6\_7$-CSA07-1194964234/RECO\\ \hline
144     $\Z\gamma \rightarrow e^+e^-\gamma$ & 1.08 (NLO) & $\sim$125k &/Zeegamma/CMSSW$\_1\_6\_7$-CSA07-1198935518/RECO \\ \hline
145     $\Z\gamma \rightarrow \mu^+\mu^-\gamma$ & 1.08 (NLO) & $\sim$ 93k & /Zmumugamma/CMSSW$\_1\_6\_7$-CSA07-1194806860/RECO\\ \hline
146 vuko 1.2 \end{tabular}
147 beaucero 1.7 \label{tab:MC}
148 ymaravin 1.14 \caption{Monte Carlo samples used in this analysis using 100 pb$^{-1}$ scenario}
149 vuko 1.2 \end{table}
150    
151 vuko 1.1
152    
153