ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/samples.tex
Revision: 1.19
Committed: Sat Jul 19 17:15:07 2008 UTC (16 years, 9 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.18: +1 -1 lines
Log Message:
adding dphi plots as backup plot and commenting out figure which is not in CVS

File Contents

# User Rev Content
1 vuko 1.1 \section{Signal and Background Modeling}
2     \label{sec:gen}
3     \subsection{Monte Carlo generators}
4     The signal and background samples for the full detector simulation
5 vuko 1.11 are generated with the leading order (LO) event generators
6 ymaravin 1.9 {\sl PYTHIA}~\cite{Sjostrand:2003wg}, {\sl ALPGEN} and {\sl COMPHEP}.
7 ymaravin 1.16 To accommodate the next-to-leading (NLO) effects, constant $k$-factors are applied
8 ymaravin 1.17 except for the signal where a $p_T$-dependence has been taken into account.
9 ymaravin 1.16
10     The $p_T$-dependent $k$-factor for the signal is estimated using
11     the NLO cross section calculator {\sl MCFM}~\cite{Campbell:2005}.
12     We estimate the PDF uncertainty on the cross-section using
13     {\sl MC@NLO 3.1}~\cite{Frixione:2002ik} NLO event generator
14     together with CTEQ6M PDF set.
15 ymaravin 1.9
16     \subsection{Signal definition}
17     The goal of this analysis is to study the associative production of the on-shell
18 ymaravin 1.14 $\W$ and $\Z$ bosons that decay into three leptons and a neutrino. In the
19 ymaravin 1.9 following we refer to a lepton to as either a muon or an electron, unless
20 ymaravin 1.16 specified otherwise.
21 ymaravin 1.9
22 ymaravin 1.10 Using {\sl MCFM} we estimate the total NLO $\WZ$ cross-section to be
23 beaucero 1.5 \begin{equation}
24 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^+\Z; \sqrt{s}=14~{\rm TeV}) = 30.5~{\rm pb},
25 beaucero 1.5 \end{equation}
26     \begin{equation}
27 ymaravin 1.10 \sigma_{NLO} ( pp \rightarrow W^-\Z; \sqrt{s}=14~{\rm TeV}) = 19.1~{\rm pb}.
28 beaucero 1.5 \end{equation}
29    
30 ymaravin 1.10 The LO and NLO distributions of the \Z boson transverse momentum are
31 senka 1.18 shown in Fig.~\ref{fig:LOvsNLO}. The NLO/LO ratio, $k$-factor, is also presented on the figure,
32 ymaravin 1.15 and it is increasing with $p_T(\Z)$. We take into account the $p_T$ dependence
33     by re-weighting the LO Monte Carlo simulation as a function of the $p_T(\Z)$.
34     %
35     %
36     %The $p_T$ dependence of the $k$-factor
37     %becomes important when a proper NLO description of the $\Z$ boson transverse
38     %momentum must be obtained, $e.g$ to measure the strength of the $WWZ$ coupling.
39     %As the focus of this analysis is to prepare for the cross-section measurement,
40     %we take a $p_{T}$-averaged value of the $k$-factor, equal to 1.84.
41 beaucero 1.5
42     \begin{figure}[!bt]
43     \begin{center}
44 vuko 1.19 % \scalebox{0.8}{\includegraphics{figs/k_faktor_for_Note.eps}}
45 senka 1.18 \caption{Top plot: comparison of $p_T(Z)$ distributions for NLO and LO; bottom plot: k factor }
46 beaucero 1.5 \label{fig:LOvsNLO}
47     \end{center}
48     \end{figure}
49 vuko 1.1
50 vuko 1.2 %# for bbll:
51     %#CS NLO ((Z/gamma*->l+l-)bb) = 830pb = 345 pb * 2.4, where:
52     %#- 345 pb is LO CS calculated with precision of ~0.15%
53     %#- 2.4 is MCMF calculated k-factor with precision ~30% (!)
54     %# 830x0.173 (== XS x eff.) = 143.59pb
55    
56    
57 ymaravin 1.10 \subsection{Signal and background Monte Carlo samples}
58    
59     The signal Monte Carlo sample is produced using {\sl PYTHIA}
60 ymaravin 1.14 generator. The decay for the \W lepton is forced to $e\nu_e$,
61 vuko 1.11 $\mu\nu_{\mu}$ or $\tau\nu_{\tau}$ final state, while the \Z decays
62 ymaravin 1.10 into electrons or muons only.
63 beaucero 1.6
64 ymaravin 1.14 The background to the \WZ final state can be divided in physics and
65 ymaravin 1.16 instrumental. The only physics background is from $Z^0Z^0$ production
66     where one of the leptons is either mis-reconstructed or lost.
67 ymaravin 1.14
68 ymaravin 1.16 The instrumental backgrounds are all due to mis-identified electron candidates
69     from either jets or photons. These backgrounds include production of $\W$ and $\Z$ bosons
70     with jets and $t\bar{t}$ processes and $Z^0\gamma$ process. The background from $W\gamma$
71     production, where the $\gamma$ converts and produces a dielectron system is neglected
72     due to a requirement on the $\ell^+\ell^-$ invariant mass to be consistent with the nominal \Z boson mass.
73 ymaravin 1.14
74 ymaravin 1.16 All non-negligible instrumental backgrounds are summarized below.
75 beaucero 1.6 \begin{itemize}
76 ymaravin 1.14 \item $\Z + jets$: this background is one of the dominant to the \WZ final state. Although
77     the misidentification rate for a jet to be misidentified as a lepton is quite small, the
78     $\Z+jets$ cross-section is 35 times larger than the signal one. We use the {\sl ALPGEN}
79     generated official samples of $\Z+jet$ production Monte Carlo samples for different
80     values of the jet transverse momentum.
81     \item $t\bar{t}$: each of the top quarks decay into a $\W b$ pair producing at least two
82     leptons and two $b$-quark jets. Although this process does not have a genuine $\Z$
83     candidate and can be suppressed be a $\Z$ candidate invariant mass requirement,
84     the probability for a $b$-quark jet to decay semi-leptonically and be misidentified
85     as a lepton is higher than that from a light-quark jets. The cross-section of the $t\bar{t}$
86     production is also exceed by about 15 times the cross-section of the \WZ production.
87     Thus, this background is also one of the most dominant. We use the official $t\bar{t}$
88     samples produced with {\sl ALPGEN} generator to estimate this background.
89     \item $\Z + b\bar{b}$: this process is produced by the {\sl COMPHEP}
90     generator and have a genuine $\Z$ candidate in the final state. One of the $b$-quark
91     jets are misidentified as the third lepton from the $\W$ boson.
92     \item $\W+jets$: in this process, the \W boson produces a genuine lepton,
93     while the other two leptons are misidentified jets. As the misidentification
94     probability is low, this channel does not contribute significantly to the \WZ
95     final state. The additional \Z candidate invariant mass requirement suppresses
96     this background further. We use the officially produced sample of $\W+jets$ processes
97     for different number of jets in the final state generated by the {\sl ALPGEN}
98     generator.
99 ymaravin 1.16 \item $Z^0\gamma$: this process is calculated with {\sl PYTHIA}.
100 beaucero 1.6 \end{itemize}
101 ymaravin 1.17 The background sources that have \Z bosons described above are simulated with the
102     contribution from the virtual photon.
103 beaucero 1.5
104 ymaravin 1.14 All the samples we use in this study are a part of the CSA07 production and
105     are generated using $\mathrm{CMSSW}\_1\_4_\_6$ using the full {\sl GEANT}
106     simulation of the CMS detector. The digitization and reconstruction are
107     done using a newer $\mathrm{CMSSW}\_1\_6_\_7$ release with a
108     misalignment/miscalibration of the detector scenario expected
109     to be achieved after collection of $\sim$ 100~pb$^{-1}$ of data.
110     All {\sl ALPGEN} samples are mixed together in further referred to as to a
111 beaucero 1.7 ``Chowder soup''.
112    
113     The summary of all datasets used for signal and background is given in
114 ymaravin 1.14 Table~\ref{tab:MC}. We use the RECO production level to access to
115 beaucero 1.7 low-level detector information, such as reconstructed hits. This lets
116 ymaravin 1.14 us to use full granularity of the CMS sub-detectors to use isolation
117 beaucero 1.7 discriminants.
118    
119 ymaravin 1.14 Analysis of the samples is done using CMSSW$\_1\_6\_7$ CMS software
120     release. The information is stored in ROOT trees using a code in
121 beaucero 1.7 CVS:/UserCode/Vuko/WZAnalysis, which is based on Physics Tools candidates.
122    
123     \begin{table}[!tb]
124     %\begin{tabular}{llllll} \hline
125     %Sample & Generator & Sample name & Events & $\sigma \cdot \epsilon
126     %\cdot k$ & k-factor \\ \hline WZ & Pythia &
127     %/WZ/CMSSW\_1\_6\_7-CSA07-1195663763/RECO & 58897 & 0.585 pb & 1.92 \\
128     %$Zb\bar{b}$ & COMPHEP &
129     %/comphep-bbll/CMSSW\_1\_6\_7-CSA07-1198677426/RECO & 143.59 pb & 2.4
130     %\\ ``Chowder'' & ALPGEN &
131     %/CSA07AllEvents/CMSSW\_1\_6\_7-CSA07-Chowder-A1-PDAllEvents-ReReco-100pb/RECO
132     %& 25 M & event weights & - \\
133     \begin{tabular}{|c|c|c|c|c|} \hline
134 ymaravin 1.14 Sample & cross section, pb & Events & Dataset name \\ \hline
135     $\WZ$ & 1.12 & 59K & /WZ/CMSSW$\_1\_6\_7$-CSA07-1195663763\\ \hline
136     $\Z b\bar{b}$ & 830*0.173 (NLO) & 1.9M & /comphep-bbll/CMSSW$\_1\_6\_7$-CSA07-1198677426\\ \hline
137 beaucero 1.7 Chowder & Event Weight & $\sim$ 21M & /CSA07AllEvents/\\ & & & CMSSW$\_1\_6\_7$-CSA07-Chowder-A1-PDAllEvents-ReReco
138     -100pb\\ \hline
139 ymaravin 1.14 $\Z\Z$ inclusive & 16.1 (NLO) & $\sim$ 140k & /ZZ$\_$incl/CMSSW$\_1\_6\_7$-CSA07-1194964234/RECO\\ \hline
140     $\Z\gamma \rightarrow e^+e^-\gamma$ & 1.08 (NLO) & $\sim$125k &/Zeegamma/CMSSW$\_1\_6\_7$-CSA07-1198935518/RECO \\ \hline
141     $\Z\gamma \rightarrow \mu^+\mu^-\gamma$ & 1.08 (NLO) & $\sim$ 93k & /Zmumugamma/CMSSW$\_1\_6\_7$-CSA07-1194806860/RECO\\ \hline
142 vuko 1.2 \end{tabular}
143 beaucero 1.7 \label{tab:MC}
144 ymaravin 1.14 \caption{Monte Carlo samples used in this analysis using 100 pb$^{-1}$ scenario}
145 vuko 1.2 \end{table}
146    
147 vuko 1.1
148    
149