10 |
|
The $p_T$-dependent $k$-factor for the signal is estimated using |
11 |
|
the NLO cross section calculator {\sl MCFM}~\cite{Campbell:2005}. |
12 |
|
We estimate the PDF uncertainty on the cross-section using |
13 |
< |
{\sl MC@NLO 3.1}~\cite{Frixione:2002ik} NLO event generator |
14 |
< |
together with CTEQ6M PDF set. |
13 |
> |
{\sl MC@NLO 3.1} NLO event generator~\cite{Frixione:2002ik} |
14 |
> |
together with CTEQ6M PDF set. |
15 |
|
|
16 |
|
\subsection{Signal definition} |
17 |
|
The goal of this analysis is to study the associative production of the on-shell |
41 |
|
|
42 |
|
\begin{figure}[!bt] |
43 |
|
\begin{center} |
44 |
< |
% \scalebox{0.8}{\includegraphics{figs/k_faktor_for_Note.eps}} |
45 |
< |
\caption{Top plot: comparison of $p_T(Z)$ distributions for NLO and LO; bottom plot: k factor } |
44 |
> |
\scalebox{0.8}{\includegraphics{figs/k_faktor_for_Note.eps}} |
45 |
> |
\caption{Top plot: comparison of $p_T(Z)$ distributions for NLO and LO for \WZ production |
46 |
> |
allowing off-shell vector bosons including photon contribution; |
47 |
> |
bottom plot: $k$-factor fit to a line.} |
48 |
|
\label{fig:LOvsNLO} |
49 |
|
\end{center} |
50 |
|
\end{figure} |
67 |
|
instrumental. The only physics background is from $Z^0Z^0$ production |
68 |
|
where one of the leptons is either mis-reconstructed or lost. |
69 |
|
|
70 |
< |
The instrumental backgrounds are all due to mis-identified electron candidates |
70 |
> |
The instrumental backgrounds are all due to misidentified electron candidates |
71 |
|
from either jets or photons. These backgrounds include production of $\W$ and $\Z$ bosons |
72 |
|
with jets and $t\bar{t}$ processes and $Z^0\gamma$ process. The background from $W\gamma$ |
73 |
< |
production, where the $\gamma$ converts and produces a dielectron system is neglected |
73 |
> |
production, where the $\gamma$ converts and produces a di-electron system is neglected |
74 |
|
due to a requirement on the $\ell^+\ell^-$ invariant mass to be consistent with the nominal \Z boson mass. |
75 |
|
|
76 |
|
All non-negligible instrumental backgrounds are summarized below. |
82 |
|
values of the jet transverse momentum. |
83 |
|
\item $t\bar{t}$: each of the top quarks decay into a $\W b$ pair producing at least two |
84 |
|
leptons and two $b$-quark jets. Although this process does not have a genuine $\Z$ |
85 |
< |
candidate and can be suppressed be a $\Z$ candidate invariant mass requirement, |
85 |
> |
candidate and can be suppressed by a $\Z$ candidate invariant mass requirement, |
86 |
|
the probability for a $b$-quark jet to decay semi-leptonically and be misidentified |
87 |
|
as a lepton is higher than that from a light-quark jets. The cross-section of the $t\bar{t}$ |
88 |
|
production is also exceed by about 15 times the cross-section of the \WZ production. |
107 |
|
are generated using $\mathrm{CMSSW}\_1\_4_\_6$ using the full {\sl GEANT} |
108 |
|
simulation of the CMS detector. The digitization and reconstruction are |
109 |
|
done using a newer $\mathrm{CMSSW}\_1\_6_\_7$ release with a |
110 |
< |
misalignment/miscalibration of the detector scenario expected |
110 |
> |
misalignment/mis-calibration of the detector scenario expected |
111 |
|
to be achieved after collection of $\sim$ 100~pb$^{-1}$ of data. |
112 |
|
All {\sl ALPGEN} samples are mixed together in further referred to as to a |
113 |
|
``Chowder soup''. |
136 |
|
Sample & cross section, pb & Events & Dataset name \\ \hline |
137 |
|
$\WZ$ & 1.12 & 59K & /WZ/CMSSW$\_1\_6\_7$-CSA07-1195663763\\ \hline |
138 |
|
$\Z b\bar{b}$ & 830*0.173 (NLO) & 1.9M & /comphep-bbll/CMSSW$\_1\_6\_7$-CSA07-1198677426\\ \hline |
139 |
< |
Chowder & Event Weight & $\sim$ 21M & /CSA07AllEvents/\\ & & & CMSSW$\_1\_6\_7$-CSA07-Chowder-A1-PDAllEvents-ReReco |
139 |
> |
Chowder & Event Weight & $\sim$ 25M & /CSA07AllEvents/\\ & & & CMSSW$\_1\_6\_7$-CSA07-Chowder-A1-PDAllEvents-ReReco |
140 |
|
-100pb\\ \hline |
141 |
< |
$\Z\Z$ inclusive & 16.1 (NLO) & $\sim$ 140k & /ZZ$\_$incl/CMSSW$\_1\_6\_7$-CSA07-1194964234/RECO\\ \hline |
142 |
< |
$\Z\gamma \rightarrow e^+e^-\gamma$ & 1.08 (NLO) & $\sim$125k &/Zeegamma/CMSSW$\_1\_6\_7$-CSA07-1198935518/RECO \\ \hline |
143 |
< |
$\Z\gamma \rightarrow \mu^+\mu^-\gamma$ & 1.08 (NLO) & $\sim$ 93k & /Zmumugamma/CMSSW$\_1\_6\_7$-CSA07-1194806860/RECO\\ \hline |
141 |
> |
$\Z\Z$ inclusive & 16.1 (NLO) & $\sim$ 140K & /ZZ$\_$incl/CMSSW$\_1\_6\_7$-CSA07-1194964234/RECO\\ \hline |
142 |
> |
$\Z\gamma \rightarrow e^+e^-\gamma$ & 1.08 (NLO) & $\sim$125K &/Zeegamma/CMSSW$\_1\_6\_7$-CSA07-1198935518/RECO \\ \hline |
143 |
> |
$\Z\gamma \rightarrow \mu^+\mu^-\gamma$ & 1.08 (NLO) & $\sim$ 93K & /Zmumugamma/CMSSW$\_1\_6\_7$-CSA07-1194806860/RECO\\ \hline |
144 |
|
\end{tabular} |
145 |
|
\label{tab:MC} |
146 |
|
\caption{Monte Carlo samples used in this analysis using 100 pb$^{-1}$ scenario} |