ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.11
Committed: Sun Jun 22 23:14:53 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.10: +56 -47 lines
Log Message:
lots of small edits everywhere

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 vuko 1.2 The four possible final states of \WZ
5 vuko 1.5 production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 vuko 1.2 and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7     denoted as follows:
8     \begin{itemize}
9     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13     \end{itemize}
14    
15    
16 vuko 1.1 \subsection{Trigger selection and efficiencies}
17    
18 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
19 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
20 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
21     the HLT efficiency for selected events close to 100\%. The same
22     HLT requirements are used for channels with the same Z decay mode:
23     \begin{itemize}
24     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26     \end{itemize}
27     The HLT efficiencies for all modes for events passing the full
28     selection described in this section are given in table~\ref{tab:hlteff}.
29    
30    
31     \begin{table}[tbph]
32     \begin{center}
33    
34     \begin{tabular}{llc} \hline \hline
35     Channel & HLT selection & HLT efficiency \\ \hline
36     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
37     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
38     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
39     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
40     \end{tabular}
41    
42     \end{center}
43     \caption{HLT Efficiencies, in percent, for all
44 vuko 1.11 the events in the generated phase space that have been retained by
45 vuko 1.2 the complete event selection.}
46     \label{tab:hlteff}
47     \end{table}
48 vuko 1.1
49 vuko 1.10
50     \begin{figure}[tbp]
51     \begin{center}
52     \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
53     \caption{Muon isolation variables for the muon associated
54     to the \W-boson decay in $2e1\mu$ events: the left plot
55     shows the sum of calorimetric energy in a $\Delta R=0.3$ cone
56     around the muon candidate; the right plot shows the sum of
57     transverse momenta of tracks within a $\Delta R = 0.25$ cone around
58     the muon candidate. The normalization of signal and background
59     distributions is arbitrary.
60     }
61     \label{fig:mu_isol}
62     \end{center}
63     \end{figure}
64    
65     \begin{figure}[tb]
66     \begin{center}
67     \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
68     \caption{
69     Muon impact parameter significance distribution
70     in $2e1\mu$ events. The normalization of signal and background
71     distributions is arbitrary.
72     }
73     \label{fig:mu_SIP}
74     \end{center}
75     \end{figure}
76    
77    
78 vuko 1.1 \subsection{Lepton identification}
79 vuko 1.2 \label{sec:leptonId}
80 vuko 1.1
81 vuko 1.2 The requirements used for electron identification in this analysis are described
82     in~\cite{noteElectronID}.
83    
84     Muon candidates are selected from global muons, which are reconstructed
85     combining measurements in the muon chambers and the central tracker.
86     An additional isolation criterion requires that the energy
87     measured in the calorimeters within a $\Delta R = 0.3$ cone around the
88     muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
89 vuko 1.7 within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev.
90     These cuts reduce the background from muons originated in
91 vuko 1.2 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
92     and clusters from the other \b-quark decay products.
93    
94     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
95     %performance of the isolation cut. The distribution of the isolation
96     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
97     %interesting, since muons only stem from \b-quark decays.
98 vuko 1.1
99 vuko 1.3 The significance of the muon impact parameter in the plane
100     transverse to the beam, $S_{IP}$, discriminates against leptons from
101     heavy-quark decays in all Standard Model background processes. This
102     variable is defined as the ratio between the measured impact parameter
103     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
104     satisfy $S_{IP}<3$. This requirement is applied only for muons
105 vuko 1.9 and not for electrons. For electrons, a significant fraction of the
106     background comes from fake electrons and not from heavy quark decays,
107     and a cut on the impact parameter significance shows no improvement
108 vuko 1.11 in significance for the $\W\to e$ channels, as can be seen in
109     Figure~\ref{fig:wl_IP_SvsCut}.
110 vuko 1.3
111 vuko 1.10 \begin{figure}[p]
112     \begin{center}
113     \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
114     \caption{Efficiency for signal and background as a function
115     of the cut value on the \W-boson lepton impact parameter
116     significance. All other cuts but the cut on this variable
117     are applied.
118     % Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
119     % are considered.
120     }
121     \label{fig:wl_IP_eff}
122     \end{center}
123     %\end{figure}
124    
125     %\begin{figure}[bt]
126     \begin{center}
127     \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
128     \caption{Signal significance as a function of the cut value on
129     the \W-boson lepton impact parameter significance. All other cuts but
130     the cut on this variable are applied.
131     % Only events with 81.1 GeV $< M_Z < $ 101.1 \gev are considered.
132     }
133     \label{fig:wl_IP_SvsCut}
134     \end{center}
135     \end{figure}
136 vuko 1.3
137 vuko 1.1
138 vuko 1.7 \begin{table}[tbp]
139     \begin{tabular}{|l|c|c|c|c|} \hline
140     & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
141     \multicolumn{5}{|c|}{Lepton selection} \\ \hline
142     Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\
143     & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} & \\ \hline
144     Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
145     & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
146     & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
147     HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
148     & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
149     \multicolumn{5}{|c|}{Z reconstruction} \\ \hline
150     Lepton cuts & \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\
151     Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
152     Second Z veto & \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
153     \multicolumn{5}{|c|}{W lepton selection} \\ \hline
154    
155     Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
156     Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
157    
158     \end{tabular}
159     \caption{Summary of all cuts used in the WZ selection}
160     \label{tab:allcuts}
161     \end{table}
162    
163    
164     \begin{figure}[p]
165     \begin{center}
166     \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
167     \caption{Efficiency for signal and background as a function
168     of the cut value on the \W-boson lepton transverse momentum.
169     All other cuts but the cut on this variable are applied.
170     Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
171     are considered.}
172     \label{fig:wlpt_cuteff}
173     \end{center}
174     %\end{figure}
175    
176     %\begin{figure}[bt]
177     \begin{center}
178     \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
179     \caption{Signal significance as a function of the cut value on
180     the \W-boson lepton transverse momentum. All other cuts but
181     the cut on this variable are applied. Only events with
182     81.1 GeV $< M_Z < $ 101.1 \gev are considered.}
183     \label{fig:wlpt_cutS}
184     \end{center}
185     \end{figure}
186    
187    
188 vuko 1.1 \subsection{\WZ candidate selection}
189    
190 vuko 1.2 Events are accepted if they contain at least three charged leptons,
191 vuko 1.3 either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
192     electrons,$| \eta | < 2.4$ for muons.
193     as discussed in~\ref{sec:leptonId}.
194 vuko 1.2
195     The \WZ candidate selection proceeds from building all possible
196     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
197     For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
198     defined in~\cite{noteElectronID}.
199    
200     Events are retained if the mass of this \Z-boson candidate is
201     within 20 GeV of the Z-boson mass,$m_Z$. The event is
202     rejected if a second Z candidate is found. This second Z candidate is done
203     with all possible same-flavour opposite-charge combinations which are left
204     after removing the two leptons already used for the first Z candidate. This
205 vuko 1.11 veto on the presence of a second Z helps to suppress $ZZ$ events.
206     %The invariant
207     %mass distribution for accepted \Z candidates is shown in
208     %Figure~\ref{fig:zcandidates}.
209 vuko 1.2
210     % and the \Z mass resolution is shown in
211     %Figure~\ref{fig:dzmass}.
212    
213     After the \Z-boson candidate is identified, the lepton associated
214     to the \W-boson decay is chosen from the remaining electrons and muons
215     in the event that have not been used for reconstructing the \Z-boson.
216     Electrons are required to pass the tight criteria described in
217     \cite{noteElectronID}. If the event contains more than three leptons,
218     the highest $p_t$ is chosen as the one from the \W-boson decay, and
219     the additional leptons are not considered further.
220     The transverse momentum of this lepton is required to be larger
221     than 20 GeV. This last requirement is effective in rejecting
222 vuko 1.7 the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff},
223     and the cut value is chosen in
224 vuko 1.2 the range that maximises the significance as shown in
225 vuko 1.7 Figure~\ref{fig:wlpt_cutS}.
226 vuko 1.2
227 vuko 1.6 An additional requirement on the isolation between electron and muons is applied
228     for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
229     to the \W-decay and any of the two muons associated to the \Z-decay be greater than
230     0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
231     decays, where one of the two muons radiates a photon which is reconstructed
232     as electrons, possibly after conversion, which shows up as a peak at around 60 GeV
233     in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
234    
235 vuko 1.11 The summary of the selection is given in Table~\ref{tab:allcuts}.
236 vuko 1.7
237 vuko 1.2 The expected number of events passing the various steps of the selection
238 vuko 1.11 is listed in Tables~\ref{tab:sel-effA}.
239 vuko 1.2 Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
240     the different generated \W and \Z decays. It can be seen there that \WZ\
241     events with both the \W and the \Z boson decaying into electrons or muons
242     almost always get reconstructed with the correct flavour. It is to be
243     noted in addition that each of our four selection channels gets a small
244     contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
245     selection efficiency for these events is however smaller which is mostly due
246     to the \pt cut on the third lepton, since the \pt spectrum of electrons or
247     muons from $W \to \tau \to e/\mu$ decays is softer.
248    
249 vuko 1.11 Tables~ref\label{tab:wz-matcheffi-Zee} and \label{tab:wz-matcheffi-Zmumu} show
250     the fraction of reconstructed \WZ events with with correclty matched leptons
251     It is in particular worth mentioning that the lepton associated to the \W-decay
252     is correclty matched to the true lepton from the \W-decay in more than 90\% of
253     the cases even for events with several lepton candidates available to be associated
254     to the \W-decay. The choice to take the candidate with the leading \pt is therefore
255     justified.
256    
257 vuko 1.3 \begin{table}[p]
258     \begin{center}
259    
260 vuko 1.9
261    
262    
263 vuko 1.3 \begin{tabular}{lcccc} \hline
264 vuko 1.9 \multicolumn{5}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
265     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
266     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
267     Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\
268     Found $W \to e$ & 41.9925 (20.4872 \%) & 171.053 (0.615286 \%) & 309.563 (0.0616238 \%) & 13.8293 (0.473511 \%) \\
269     W Lepton Pt cut & 34.8561 (83.0056 \%) & 23.7161 (13.8648 \%) & 86.7924 (28.037 \%) & 8.25515 (59.6931 \%) \\
270     Passes HLT & 34.7185 (99.6052 \%) & 23.5679 (99.375 \%) & 86.7924 (100 \%) & 8.25515 (100 \%) \\
271     Z mass window & 31.5533 (90.8834 \%) & 17.4906 (74.2138 \%) & 51.8927 (59.7894 \%) & 3.2585 (39.4724 \%) \\ \hline
272     Overall efficiency & 5.77899 \% & 0.0240354 \% & 0.00409279 \% & 0.0185605 \% \\
273 vuko 1.3 \hline
274     \end{tabular}
275     \begin{tabular}{lcccc} \hline
276 vuko 1.9 \multicolumn{5}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
277     Step & WZ & bbll & Z+jets & \ttjets\\ \hline
278     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
279     Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\
280     Found $W \to \mu$ & 47.9099 (23.3743 \%) & 747.725 (2.68961 \%) & 2194.09 (0.436771 \%) & 56.7645 (1.9436 \%) \\
281     W Lepton Pt cut & 37.0973 (77.4313 \%) & 9.63467 (1.28853 \%) & 9.57604 (0.436446 \%) & 17.5382 (30.8965 \%) \\
282     Passes HLT & 36.1929 (97.5623 \%) & 9.26411 (96.1538 \%) & 8.32189 (86.9033 \%) & 15.2488 (86.9457 \%) \\
283     Z mass window & 32.5166 (89.8425 \%) & 8.15242 (88 \%) & 7.31467 (87.8968 \%) & 4.91533 (32.2343 \%) \\ \hline
284     Overall efficiency & 5.95542 \% & 0.0112029 \% & 0.000576911 \% & 0.0279978 \% \\
285 vuko 1.3 \hline
286     \end{tabular}
287    
288     \begin{tabular}{lcccc} \hline
289 vuko 1.9 \multicolumn{5}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
290     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
291     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
292     Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\
293     Found $W \to e$ & 48.7553 (20.8579 \%) & 213.519 (0.669562 \%) & 701.695 (0.121557 \%) & 15.1085 (0.543704 \%) \\
294     W Lepton Pt cut & 40.6556 (83.3871 \%) & 50.6191 (23.707 \%) & 464.493 (66.196 \%) & 10.2745 (68.0047 \%) \\
295     $\Delta R(e,\mu)$ cut & 40.5573 (99.7582 \%) & 23.3456 (46.1201 \%) & 92.9813 (20.0178 \%) & 7.14967 (69.5865 \%) \\
296     Passes HLT & 39.4171 (97.1886 \%) & 23.1973 (99.3651 \%) & 88.7791 (95.4806 \%) & 6.6245 (92.6546 \%) \\
297     Z mass window & 35.5638 (90.2244 \%) & 18.8988 (81.4696 \%) & 50.2509 (56.6022 \%) & 2.84083 (42.8837 \%) \\ \hline
298     Overall efficiency & 6.51352 \% & 0.0259704 \% & 0.00396331 \% & 0.0161814 \% \\
299 vuko 1.3 \hline
300     \end{tabular}
301    
302 vuko 1.9
303 vuko 1.3 \begin{tabular}{lcccc} \hline
304 vuko 1.9 \multicolumn{5}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
305     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
306     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
307     Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\
308     Found $W \to \mu$ & 57.7986 (24.7267 \%) & 810.721 (2.54229 \%) & 2520.69 (0.436668 \%) & 35.3061 (1.27054 \%) \\
309     W Lepton Pt cut & 44.2533 (76.5646 \%) & 8.89355 (1.09699 \%) & 1.84115 (0.0730414 \%) & 1.683 (4.76688 \%) \\
310     Passes HLT & 43.9977 (99.4225 \%) & 8.89355 (100 \%) & 1.84115 (100 \%) & 1.683 (100 \%) \\
311     Z mass window & 40.0462 (91.0188 \%) & 7.78185 (87.5 \%) & 1.84115 (100 \%) & 1.15783 (68.7957 \%) \\ \hline
312     Overall efficiency & 7.33446 \% & 0.0106937 \% & 0.000145212 \% & 0.00659501 \% \\
313 vuko 1.3 \hline
314     \end{tabular}
315 vuko 1.9
316    
317 vuko 1.3 \caption{Expected number of signal and background events passing the different
318 vuko 1.9 selections steps in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
319 vuko 1.3 of 1 \invfb.}
320     \label{tab:sel-effA}
321     \end{center}
322     \end{table}
323    
324 vuko 1.11 \begin{table}[p]
325 vuko 1.7 \begin{center}
326     \begin{tabular}{lccccc}
327     \hline \hline
328     & \multicolumn{5}{c}{$Z \to ee $} \\
329     & $W \to e$
330     & $W \to \mu$
331     & $W \to \tau \to e$
332     & $W \to \tau \to \mu$
333     & $W \to \tau \to hadrons$
334     \\ \hline
335     $3e$ & 17.4 \% & 0.0319 \% & 6.42 \% & 0 \% & 0.162 \% \\
336     $2e1\mu$ & 0 \% & 18.6 \% & 0 \% & 5.53 \% & 0.0485 \% \\
337     $2\mu1e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
338     $3\mu$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
339     \hline \hline
340     & \multicolumn{5}{c}{$Z \to \mu\mu $} \\
341     & $W \to e$
342     & $W \to \mu$
343     & $W \to \tau \to e$
344     & $W \to \tau \to \mu$
345     & $W \to \tau \to hadrons$
346     \\ \hline
347     $3e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
348     $2e1\mu$ & 0.0104 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
349     $2\mu1e$ & 19.6 \% & 0.0208 \% & 5.56 \% & 0 \% & 0.18 \% \\
350     $3\mu$ & 0 \% & 23.4 \% & 0.0573 \% & 6.77 \% & 0.0164 \% \\
351     \hline \hline
352     \end{tabular}
353     \end{center}
354     \caption{Selection efficiency for signal events in the four selection channels for the different
355     generated \W and \Z decay channels.}
356     \label{tab:wz-effimatrix}
357    
358 vuko 1.11 %\end{table}
359     %\begin{table}[tbp]
360 vuko 1.7 \begin{center}
361     \begin{tabular}{llcc} \hline
362     & & \multicolumn{2}{c}{Generated decay:} \\
363     & & \multicolumn{2}{c}{$Z \to ee $} \\
364     Selection channel & & $W \to e$ & $W \to \mu$ \\ \hline
365     \hline \hline
366     \multicolumn{4}{c}{all} \\ \hline
367     $3e$ & all & 1644 & 3 \\
368     $3e$ & matched Z & 0.937+/-0.00598 & 1+/-0\\
369     $3e$ & matched W & 0.915+/-0.00688 & 0+/--1\\
370     $3e$ & matched WZ & 0.914+/-0.00691 & 0+/--1\\
371     \hline \hline
372     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
373     $3e$ & all & 1602 & 0 \\
374     $3e$ & matched Z & 0.938+/-0.00604 & -1+/--1\\
375     $3e$ & matched W & 0.915+/-0.00696 & -1+/--1\\
376     $3e$ & matched WZ & 0.914+/-0.00699 & -1+/--1\\
377     \hline \hline
378     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
379     $3e$ & all & 42 & 3 \\
380     $3e$ & matched Z & 0.929+/-0.0397 & 1+/-0\\
381     $3e$ & matched W & 0.905+/-0.0453 & 0+/--1\\
382     $3e$ & matched WZ & 0.905+/-0.0453 & 0+/--1\\
383     \hline \hline
384     \multicolumn{4}{c}{all} \\ \hline
385     $2e1\mu$ & all & 0 & 1746 \\
386     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000573\\
387     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
388     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000573\\
389     \hline \hline
390     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
391     $2e1\mu$ & all & 0 & 1715 \\
392     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000583\\
393     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
394     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000583\\
395     \hline \hline
396     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
397     $2e1\mu$ & all & 0 & 31 \\
398     $2e1\mu$ & matched Z & -1+/--1 & 1+/-0\\
399     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
400     $2e1\mu$ & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline
401     \end{tabular}
402     \end{center}
403     \caption{Fractions of events with correctly matched leptons
404     to true decay product of \W and \Z decays for final states
405     with generated $\Z\to ee$ decays}
406     \label{tab:wz-matcheffi-Zee}
407     \end{table}
408    
409    
410    
411     \begin{table}[tbp]
412     \begin{center}
413     \begin{tabular}{llcc} \hline
414     & & \multicolumn{2}{c}{Generated decay:} \\
415     & & \multicolumn{2}{c}{$Z \to \mu\mu $} \\
416     Selection channel & & $W \to e$ & $W \to \mu$
417     \\ \hline
418     \hline \hline
419     \multicolumn{4}{c}{all} \\ \hline
420     $2\mu1e$ & all & 1895 & 2 \\
421     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
422     $2\mu1e$ & matched W & 0.985+/-0.00282 & 0+/--1\\
423     $2\mu1e$ & matched WZ & 0.985+/-0.00282 & 0+/--1\\
424     \hline \hline
425     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
426     $2\mu1e$ & all & 1847 & 0 \\
427     $2\mu1e$ & matched Z & 1+/-0 & -1+/--1\\
428     $2\mu1e$ & matched W & 0.986+/-0.00274 & -1+/--1\\
429     $2\mu1e$ & matched WZ & 0.986+/-0.00274 & -1+/--1\\
430     \hline \hline
431     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
432     $2\mu1e$ & all & 48 & 2 \\
433     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
434     $2\mu1e$ & matched W & 0.938+/-0.0349 & 0+/--1\\
435     $2\mu1e$ & matched WZ & 0.938+/-0.0349 & 0+/--1\\
436     \hline \hline
437     \multicolumn{4}{c}{all} \\ \hline
438     $3\mu$ & all & 0 & 2251 \\
439     $3\mu$ & matched Z & -1+/--1 & 0.943+/-0.00488\\
440     $3\mu$ & matched W & -1+/--1 & 0.933+/-0.00526\\
441     $3\mu$ & matched WZ & -1+/--1 & 0.933+/-0.00526\\
442     \hline \hline
443     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
444     $3\mu$ & all & 0 & 2207 \\
445     $3\mu$ & matched Z & -1+/--1 & 0.944+/-0.0049\\
446     $3\mu$ & matched W & -1+/--1 & 0.934+/-0.00529\\
447     $3\mu$ & matched WZ & -1+/--1 & 0.934+/-0.00529\\
448     \hline \hline
449     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
450     $3\mu$ & all & 0 & 44 \\
451     $3\mu$ & matched Z & -1+/--1 & 0.909+/-0.0433\\
452     $3\mu$ & matched W & -1+/--1 & 0.909+/-0.0433\\
453     $3\mu$ & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline
454     \end{tabular}
455     \end{center}
456     \caption{Fractions of MC \WZ events with correctly matched leptons
457     to true decay product of \W and \Z decays for final states
458     with generated $\Z\to \mu\mu$ decays}
459     \label{tab:wz-matcheffi-Zmumu}
460     \end{table}
461    
462 vuko 1.11
463     %\subsection{Signal extraction}
464     %\input D0Matrix
465     \input zjetbackground
466    
467    
468     \section{Systematic uncertainties}
469     \input Sys
470    
471    
472     \begin{figure}[bt]
473     \begin{center}
474     \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
475     \caption{Missing transverse mass for the four signal categories.
476     The distributions show the number of expected events
477     for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
478     are shown. All selection cuts are applied.}
479     \label{fig:met}
480     \end{center}
481     \end{figure}
482    
483     \begin{figure}[bt]
484     \begin{center}
485     \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
486     \caption{W transverse mass for the four signal categories.
487     The distributions show the number of expected events
488     for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.
489     All selection cuts are applied.}
490     \label{fig:mtw}
491     \end{center}
492     \end{figure}
493    
494    
495    
496    
497