ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.16
Committed: Fri Jun 27 17:14:35 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.15: +24 -1 lines
Log Message:
added small section on MET on M_T(W)

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 ymaravin 1.12 We categorize \WZ\ three-lepton final state as following
5 vuko 1.2 \begin{itemize}
6     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
7     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
8     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
9     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
10     \end{itemize}
11    
12    
13 vuko 1.1 \subsection{Trigger selection and efficiencies}
14    
15 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
16 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
17 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
18     the HLT efficiency for selected events close to 100\%. The same
19 ymaravin 1.12 HLT requirements are used for channels with the same \Z decay mode:
20 vuko 1.2 \begin{itemize}
21     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
22     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
23     \end{itemize}
24     The HLT efficiencies for all modes for events passing the full
25     selection described in this section are given in table~\ref{tab:hlteff}.
26    
27     \begin{table}[tbph]
28     \begin{center}
29    
30     \begin{tabular}{llc} \hline \hline
31     Channel & HLT selection & HLT efficiency \\ \hline
32     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
33     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
34     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
35     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
36     \end{tabular}
37    
38     \end{center}
39 vuko 1.15 \caption{HLT Efficiencies for all the events in the generated phase space that
40     have been retained by the complete event selection.}
41 vuko 1.2 \label{tab:hlteff}
42     \end{table}
43 vuko 1.1
44 vuko 1.10
45     \begin{figure}[tbp]
46     \begin{center}
47     \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
48     \caption{Muon isolation variables for the muon associated
49 ymaravin 1.12 to the \W boson decay in $2e1\mu$ events: in the left plot
50     we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone
51     around the muon candidate; in the right plot we display the sum of
52 vuko 1.10 transverse momenta of tracks within a $\Delta R = 0.25$ cone around
53     the muon candidate. The normalization of signal and background
54     distributions is arbitrary.
55     }
56     \label{fig:mu_isol}
57     \end{center}
58     \end{figure}
59    
60     \begin{figure}[tb]
61     \begin{center}
62     \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
63     \caption{
64     Muon impact parameter significance distribution
65     in $2e1\mu$ events. The normalization of signal and background
66     distributions is arbitrary.
67     }
68     \label{fig:mu_SIP}
69     \end{center}
70     \end{figure}
71    
72    
73 vuko 1.1 \subsection{Lepton identification}
74 vuko 1.2 \label{sec:leptonId}
75 vuko 1.1
76 vuko 1.2 The requirements used for electron identification in this analysis are described
77     in~\cite{noteElectronID}.
78    
79     Muon candidates are selected from global muons, which are reconstructed
80 ymaravin 1.12 by combining measurements in the muon chambers and the central tracker.
81     An additional isolation criterion is imposed to require the energy
82 vuko 1.2 measured in the calorimeters within a $\Delta R = 0.3$ cone around the
83 ymaravin 1.12 muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks
84     within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV.
85 vuko 1.7 These cuts reduce the background from muons originated in
86 vuko 1.2 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
87     and clusters from the other \b-quark decay products.
88 vuko 1.16 The signal and background distributions of these isolation variables
89     are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate
90     events.
91 vuko 1.2
92     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
93     %performance of the isolation cut. The distribution of the isolation
94     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
95     %interesting, since muons only stem from \b-quark decays.
96 vuko 1.1
97 vuko 1.3 The significance of the muon impact parameter in the plane
98     transverse to the beam, $S_{IP}$, discriminates against leptons from
99 ymaravin 1.12 heavy-quark decays in all standard model background processes. This
100 vuko 1.3 variable is defined as the ratio between the measured impact parameter
101     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
102 ymaravin 1.12 satisfy $S_{IP}<3$. This requirement is applied only for muon candidates
103     and not for electrons. For electron candidates, a significant fraction of the
104     background comes from misidentified light quark jets. Thus,
105     the requirement on the impact parameter significance does not
106     increase the significance of the $\W\to e$ channels, as can be seen in
107 vuko 1.16 Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon
108     in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}.
109 vuko 1.3
110 vuko 1.10 \begin{figure}[p]
111     \begin{center}
112     \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
113     \caption{Efficiency for signal and background as a function
114 ymaravin 1.12 of the requirement on the \W-boson lepton impact parameter
115     significance. All other criteria but the one on impact parameter
116     significance are applied.
117 vuko 1.15 % Only events with 81 GeV $< M_Z < $ 101 \gev
118 vuko 1.10 % are considered.
119     }
120     \label{fig:wl_IP_eff}
121     \end{center}
122     %\end{figure}
123    
124     %\begin{figure}[bt]
125     \begin{center}
126     \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
127 ymaravin 1.12 \caption{Signal significance as a function of requirement on
128     the \W-boson lepton impact parameter significance. All other criteria but
129     the requirement on the impact parameter significance are applied.
130 vuko 1.15 % Only events with 81 GeV $< M_Z < $ 101 \gev are considered.
131 vuko 1.10 }
132     \label{fig:wl_IP_SvsCut}
133     \end{center}
134     \end{figure}
135 vuko 1.3
136 vuko 1.1
137 vuko 1.7 \begin{table}[tbp]
138     \begin{tabular}{|l|c|c|c|c|} \hline
139     & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
140     \multicolumn{5}{|c|}{Lepton selection} \\ \hline
141 ymaravin 1.13 Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\
142     & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} & \\ \hline
143 vuko 1.7 Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
144     & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
145     & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
146     HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
147     & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
148 ymaravin 1.13 \multicolumn{5}{|c|}{\Z reconstruction} \\ \hline
149     Lepton cuts & \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\
150 vuko 1.7 Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
151 ymaravin 1.13 Second \Z veto & \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
152     \multicolumn{5}{|c|}{\W lepton selection} \\ \hline
153 vuko 1.7
154     Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
155     Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
156    
157     \end{tabular}
158 ymaravin 1.13 \caption{Summary of the criteria we use to select \WZ\ final state}
159 vuko 1.7 \label{tab:allcuts}
160     \end{table}
161    
162    
163     \begin{figure}[p]
164     \begin{center}
165     \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
166     \caption{Efficiency for signal and background as a function
167     of the cut value on the \W-boson lepton transverse momentum.
168     All other cuts but the cut on this variable are applied.
169 vuko 1.15 Only events with 81 GeV $< M_Z < $ 101 \gev
170 vuko 1.7 are considered.}
171     \label{fig:wlpt_cuteff}
172     \end{center}
173     %\end{figure}
174    
175     %\begin{figure}[bt]
176     \begin{center}
177     \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
178     \caption{Signal significance as a function of the cut value on
179     the \W-boson lepton transverse momentum. All other cuts but
180     the cut on this variable are applied. Only events with
181 vuko 1.15 81 GeV $< M_Z < $ 101 \gev are considered.}
182 vuko 1.7 \label{fig:wlpt_cutS}
183     \end{center}
184     \end{figure}
185    
186    
187 vuko 1.1 \subsection{\WZ candidate selection}
188    
189 vuko 1.2 Events are accepted if they contain at least three charged leptons,
190 ymaravin 1.13 either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
191     electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}.
192 vuko 1.2
193     The \WZ candidate selection proceeds from building all possible
194     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
195 ymaravin 1.13 For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements
196 vuko 1.2 defined in~\cite{noteElectronID}.
197    
198 ymaravin 1.13 Events are retained if the mass of the \Z boson candidate is
199     within 20 GeV of the \Z boson mass, $m_Z$. The event is
200     rejected if a second \Z candidate is found. This second \Z boson candidate is formed
201     using all possible same-flavour opposite-charge combinations which are left
202     after removing the two leptons already used for the first \Z boson candidate. This
203     secondary \Z boson veto helps to suppress $\Z\Z$ events.
204 vuko 1.11 %The invariant
205     %mass distribution for accepted \Z candidates is shown in
206     %Figure~\ref{fig:zcandidates}.
207 vuko 1.2
208     % and the \Z mass resolution is shown in
209     %Figure~\ref{fig:dzmass}.
210    
211 ymaravin 1.13 After the \Z boson candidate is identified, the remaining leptons in the event
212 vuko 1.15 are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID}
213     or, for muons, all criteria described in section~\ref{sec:leptonId}.
214 ymaravin 1.13 If more than one lepton candidate satisfies the tight requirements, the one with the
215     highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective
216     discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}).
217     We require the transverse momentum to exceed 20 GeV, as it maximizes
218     the significance of the \WZ\ signal with respect to background as shown in
219 vuko 1.15 Fig.~\ref{fig:wlpt_cutS}.
220 ymaravin 1.13
221     An additional requirement on the isolation between electron and muon candidates is applied
222     for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron
223     candidate associated with the \W boson decay and any of the two muons associated with
224     the \Z boson decay to be greater than 0.1.
225    
226     This requirement allows suppressing the contribution of $\Z \to \mu\mu$
227 vuko 1.6 decays, where one of the two muons radiates a photon which is reconstructed
228 ymaravin 1.13 as an electron, possibly after conversion. This can be seen as a peak in the dimuon
229     invariant mass at around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}.
230 vuko 1.6
231 ymaravin 1.13 The summary of the selection criteria is given in Table~\ref{tab:allcuts}.
232 vuko 1.7
233 ymaravin 1.13 The expected number of the events satisfying the sequential steps of the selection
234     is listed in Tables~\ref{tab:sel-effA}.
235     In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for different
236     \W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z
237     boson decays are almost always are reconstructed with the correct flavor. As expected,
238     there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$
239     decays. However, this contribution is suppressed, mostly due to $p_T$ requirement
240     on the third lepton, as leptons from $\tau$ decays are not as energetic as those from
241     $\W \to \ell \nu$ processes.
242    
243 vuko 1.15 In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we
244 ymaravin 1.13 display the fraction of reconstructed \WZ events with correctly-matched leptons.
245     It can be seen that the lepton associated with the \W boson decay is correctly matched
246     to the true Monte Carlo lepton from the \W boson decay in more than 90\% of
247     the cases, even for events with several lepton candidates available to be associated
248     to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is,
249     therefore, justified.
250 vuko 1.11
251 vuko 1.3 \begin{table}[p]
252     \begin{center}
253    
254 vuko 1.9
255    
256    
257 ymaravin 1.13 \begin{tabular}{lcc|cc|cc|cc|c} \hline \hline
258     \multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
259     Step & \WZ & $\epsilon$ & $b\bar{b}\ell\ell$ & $\epsilon$ & $\Z+jets$ & $\epsilon$ & $t\bar{t}+jets$ & $\epsilon$ \\ \hline
260     All events & 546 & & 72,700 & & 1,268,000 & & 17,600 & \\
261     Found $\Z \to ee$ & 205 & 38\% & 27,800 & 38\% & 502,300 & 40\% & 2,920 & 17\% \\
262     Found $\W \to e\nu$ & 42.0 & 21\% & 171 & 0.6\% & 309.6 & 0.06\% & 13.8 & 0.5\% \\
263     \W lepton $p_T$ cut & 34.9 & 83\% & 23.7 & 14\% & 86.8 & 28 \% & 8.3 & 60\% \\
264     Passes HLT & 34.7 & 100\% & 23.6 & 99\% & 86.8 &100\% & 8.3 & 100\% \\
265     \Z mass window & 31.6 & 91\% & 17.5 & 74\% & 51.9 &60\% & 3.3 & 39\% \\ \hline
266     Overall efficiency & & 5.8\% & & 0.024\% & & 0.0041\% & & 0.019\% \\
267     \hline\hline
268    
269     \multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
270     Step & \WZ & $\epsilon$ & $b\bar{b}\ell\ell$ & $\epsilon$ & $\Z+jets$ & $\epsilon$ & $t\bar{t}+jets$ & $\epsilon$ \\ \hline
271     All events & 546 & & 72,770 & & 1,268,000 & & 17,600 & \\
272     Found $\Z \to ee$ & 201 & 38\% & 27,800 & 38\% & 502,300 & 40\% & 2,921 &17\% \\
273     Found $\W \to \mu\nu$ & 47.9 & 23\% & 748 & 2.7\% & 2194 & 0.43\% & 56.8 &1.9\% \\
274     \W lepton $p_T$ cut & 37.1 & 77\% & 9.6 & 1.3\% & 9.6 & 0.4\% & 17.5 &31\% \\
275     Passes HLT & 36.2 & 98\% & 9.3 & 96\% & 8.3 & 87\% & 15.2 & 87 \%) \\
276     \Z mass window & 32.5 & 90\% & 8.2 & 88\% & 7.3 & 88\% & 4.9 & 32\%) \\ \hline
277     Overall efficiency & & 6.0\% & & 0.011\% & & 0.00058\% & & 0.028\% \\
278     \hline \hline
279    
280     \multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
281     Step & \WZ & $\epsilon$ & $b\bar{b}\ell\ell$ & $\epsilon$ & $\Z+jets$ & $\epsilon$ & $t\bar{t}+jets$ & $\epsilon$ \\ \hline
282     All events & 546 & & 72,770 & & 1,268,000 & & 17,600 & \\
283     Found $\Z \to \mu\mu$ & 234 &43\%& 31,890 & 44\% & 577,200 & 46\% & 2779 & 16\% \\
284     Found $\W \to e\nu$ & 48.8 &21\%& 214 & 0.67\% & 702 & 0.12\% & 15.1 & 0.54\% \\
285     \W lepton $p_T$ cut & 40.7 &83\%& 50.6 & 24\% & 464.0 & 66\% & 10.3 & 68\% \\
286     $\Delta R(e,\mu)$ cut & 40.6&100\%& 23.3 & 46\% & 93.0 & 20\% & 7.1 & 70\% \\
287     Passes HLT & 39.4 &97\%& 23.2 & 99\% & 88.8 & 95\% & 6.6 & 93\% \\
288     \Z mass window & 35.6 & 90\% & 18.9 & 81\% & 50.3 & 57\% & 2.8 &44\% \\ \hline
289     Overall efficiency & &6.5\% & & 0.026\% & & 0.0040\% & & 0.016\% \\
290     \hline \hline
291    
292     \multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
293     Step & \WZ & $\epsilon$ & ${b\bar{b}\ell\ell}$ & $\epsilon$ & $\Z+jets$ & $\epsilon$ & ${t\bar{t}+jets}$ & $\epsilon$ \\ \hline
294     All events & 546 & & 72,770 & & 1,268,000 & & 17,600 & \\
295     Found $Z \to \mu\mu$ & 234 & 43\% & 31,900 & 44\% & 577,000 & 45\% & 2779 & 16 \% \\
296     Found $W \to \mu$ & 58 & 25 \% & 811 & 2.5\% & 2521 & 0.44\% & 35.3 & 1.23 \% \\
297     W Lepton Pt cut & 44.2 & 77 \% & 8.9 & 1.1\% & 1.8 & 0.07\% & 1.7 & 4.8 \% \\
298     Passes HLT & 44.0 & 99\% & 8.9 & 100\% & 1.8 & 100 \% & 1.7 & 100 \% \\
299     Z mass window & 40.0 & 91 \%) & 7.8 & 88\% & 1.8 & 100 \% & 1.2 & 69\% \\ \hline
300     Overall efficiency & & 7.3 \% & & 0.011\% & & 0.00015\% & & 0.0065\% \\
301 vuko 1.3 \hline
302     \end{tabular}
303 vuko 1.9
304    
305 vuko 1.3 \caption{Expected number of signal and background events passing the different
306 ymaravin 1.13 selections steps together with the efficiency of each requirement and total efficiency of
307     selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
308 vuko 1.3 of 1 \invfb.}
309     \label{tab:sel-effA}
310     \end{center}
311     \end{table}
312    
313 vuko 1.11 \begin{table}[p]
314 vuko 1.7 \begin{center}
315 ymaravin 1.13 \begin{tabular}{l|ccccc}
316 vuko 1.7 \hline \hline
317 ymaravin 1.13 & \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\
318     Reconstruction channel & $e \nu$
319     & $\mu \nu $
320     & $\tau \nu \to e \nu \nu $
321     & $\tau \nu \to \mu \nu \nu $
322     & $\tau \nu \to {\rm hadrons~} \nu$
323 vuko 1.7 \\ \hline
324     $3e$ & 17.4 \% & 0.0319 \% & 6.42 \% & 0 \% & 0.162 \% \\
325     $2e1\mu$ & 0 \% & 18.6 \% & 0 \% & 5.53 \% & 0.0485 \% \\
326     $2\mu1e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
327     $3\mu$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
328     \hline \hline
329 ymaravin 1.13
330     & \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\
331     Reconstruction channel & $e\nu$
332     & $\mu\nu$
333     & $\tau\nu \to e\nu\nu$
334     & $\tau\nu \to \mu\nu\nu$
335     & $\tau\nu \to {\rm hadrons~}\nu$
336 vuko 1.7 \\ \hline
337     $3e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
338     $2e1\mu$ & 0.0104 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
339     $2\mu1e$ & 19.6 \% & 0.0208 \% & 5.56 \% & 0 \% & 0.18 \% \\
340     $3\mu$ & 0 \% & 23.4 \% & 0.0573 \% & 6.77 \% & 0.0164 \% \\
341     \hline \hline
342     \end{tabular}
343     \end{center}
344     \caption{Selection efficiency for signal events in the four selection channels for the different
345     generated \W and \Z decay channels.}
346     \label{tab:wz-effimatrix}
347    
348 vuko 1.11 %\end{table}
349     %\begin{table}[tbp]
350 vuko 1.7 \begin{center}
351     \begin{tabular}{llcc} \hline
352 ymaravin 1.13 & & \multicolumn{2}{c}{Generated decay} \\
353     & & \multicolumn{2}{c}{$\Z \to ee $} \\
354     Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ \\
355 vuko 1.7 \hline \hline
356     \multicolumn{4}{c}{all} \\ \hline
357 ymaravin 1.13 $3e$ & all & 1644 events & 3 events \\
358     $3e$ & matched \Z & 93$\pm$1\% & 100\%\\
359     $3e$ & matched \W & 92$\pm$1\% & 0\\
360     $3e$ & matched \WZ & 91$\pm$1\% & 0\\
361     \hline \hline
362    
363     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
364     $3e$ & all & 1602 events & 0 events \\
365     $3e$ & matched \Z & 94$\pm$1\% & 0\\
366     $3e$ & matched \W & 92$\pm$1\% & 0\\
367     $3e$ & matched \WZ & 91$\pm$1\% & 0\\
368     \hline \hline
369    
370     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
371     $3e$ & all & 42 events & 3 events \\
372     $3e$ & matched \Z & 93$\pm$4\% & 100\%\\
373     $3e$ & matched \W & 91 $\pm$5\% & 0\\
374     $3e$ & matched \WZ & 91$\pm$5\% & 0\\
375 vuko 1.7 \hline \hline
376 ymaravin 1.13
377 vuko 1.7 \multicolumn{4}{c}{all} \\ \hline
378 ymaravin 1.13 $2e1\mu$ & all & 0 events & 1746 events \\
379     $2e1\mu$ & matched \Z & 0 & 100\%\\
380     $2e1\mu$ & matched \W & 0 & 100\%\\
381     $2e1\mu$ & matched \WZ & 0 & 100\%\\
382     \hline \hline
383    
384     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
385     $2e1\mu$ & all & 0 events & 1715 events \\
386     $2e1\mu$ & matched \Z & 0 & 100\%\\
387     $2e1\mu$ & matched \W & 0 & 100\%\\
388     $2e1\mu$ & matched \WZ & 0 & 100\%\\
389 vuko 1.7 \hline \hline
390 ymaravin 1.13
391     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
392 vuko 1.7 $2e1\mu$ & all & 0 & 31 \\
393 ymaravin 1.13 $2e1\mu$ & matched \Z & 0 & 100\%\\
394     $2e1\mu$ & matched \W & 0 & 100\%\\
395     $2e1\mu$ & matched \WZ & 0 & 100\% \\ \hline \hline
396 vuko 1.7 \end{tabular}
397     \end{center}
398     \caption{Fractions of events with correctly matched leptons
399     to true decay product of \W and \Z decays for final states
400     with generated $\Z\to ee$ decays}
401     \label{tab:wz-matcheffi-Zee}
402     \end{table}
403    
404    
405    
406     \begin{table}[tbp]
407     \begin{center}
408     \begin{tabular}{llcc} \hline
409     & & \multicolumn{2}{c}{Generated decay:} \\
410 ymaravin 1.13 & & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\
411     Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$
412     \\
413 vuko 1.7 \hline \hline
414     \multicolumn{4}{c}{all} \\ \hline
415 ymaravin 1.13 $2\mu1e$ & all & 1895 events & 2 events \\
416     $2\mu1e$ & matched \Z & 100\% & 100\%\\
417     $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
418     $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
419     \hline \hline
420    
421     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
422     $2\mu1e$ & all & 1847 events & 0 events \\
423     $2\mu1e$ & matched \Z & 100\% & 0\\
424     $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
425     $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
426     \hline \hline
427    
428     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
429     $2\mu1e$ & all & 48 events & 2 events \\
430     $2\mu1e$ & matched \Z & 100\% & 100\%\\
431     $2\mu1e$ & matched \W & 94$\pm$3.5\%& 0\\
432     $2\mu1e$ & matched \WZ & 94$\pm$3.5\% & 0\\
433 vuko 1.7 \hline \hline
434 ymaravin 1.13
435 vuko 1.7 \multicolumn{4}{c}{all} \\ \hline
436 ymaravin 1.13 $3\mu$ & all & 0 events & 2251 events \\
437     $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
438     $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
439     $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
440     \hline \hline
441    
442     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
443     $3\mu$ & all & 0 events & 2207 events \\
444     $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
445     $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
446     $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
447     \hline \hline
448    
449     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
450     $3\mu$ & all & 0 events & 44 events \\
451     $3\mu$ & matched \Z & 0 & 91$\pm$4\%\\
452     $3\mu$ & matched \W & 0 & 91$\pm$4\%\\
453     $3\mu$ & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline
454 vuko 1.7 \end{tabular}
455     \end{center}
456     \caption{Fractions of MC \WZ events with correctly matched leptons
457     to true decay product of \W and \Z decays for final states
458     with generated $\Z\to \mu\mu$ decays}
459     \label{tab:wz-matcheffi-Zmumu}
460     \end{table}
461    
462 vuko 1.11
463     %\subsection{Signal extraction}
464     %\input D0Matrix
465     \input zjetbackground
466    
467    
468 vuko 1.16 \subsection{Complementary studies: can we use the neutrino?}
469    
470     In $\WZ \to \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino
471     coming from the \W-boson decay leaves the detector with a significant
472     amount of energy, which should reflect in a large transverse missing
473     energy measurement. On the other side, no large MET is expected for
474     the most important background categories, especially \Zjets,
475     \Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be
476     seen in Figure~\ref{fig:met}.
477    
478     Another variable sensitive to the presence of the neutrino
479     is the W transverse mass $m_T^W$, obtained by combining the missing
480     energy vector and the lepton associated to the \W-boson decay.
481     The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}.
482     The signal yield could be extracted from that distribution.
483     This requires however additional studies and it has not been
484     done at this stage.
485    
486    
487 vuko 1.11 \section{Systematic uncertainties}
488     \input Sys
489    
490    
491     \begin{figure}[bt]
492     \begin{center}
493     \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
494     \caption{Missing transverse mass for the four signal categories.
495     The distributions show the number of expected events
496 vuko 1.15 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev
497 vuko 1.11 are shown. All selection cuts are applied.}
498     \label{fig:met}
499     \end{center}
500     \end{figure}
501    
502     \begin{figure}[bt]
503     \begin{center}
504     \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
505 ymaravin 1.14 \caption{\W transverse mass for the four signal categories.
506 vuko 1.11 The distributions show the number of expected events
507 vuko 1.15 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown.
508 vuko 1.11 All selection cuts are applied.}
509     \label{fig:mtw}
510     \end{center}
511     \end{figure}
512    
513    
514    
515    
516