ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.19
Committed: Fri Jun 27 23:38:48 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.18: +11 -7 lines
Log Message:
editing

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 ymaravin 1.12 We categorize \WZ\ three-lepton final state as following
5 vuko 1.2 \begin{itemize}
6     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
7     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
8     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
9     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
10     \end{itemize}
11    
12    
13 vuko 1.1 \subsection{Trigger selection and efficiencies}
14    
15 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
16 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
17 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
18     the HLT efficiency for selected events close to 100\%. The same
19 ymaravin 1.12 HLT requirements are used for channels with the same \Z decay mode:
20 vuko 1.2 \begin{itemize}
21     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
22     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
23     \end{itemize}
24     The HLT efficiencies for all modes for events passing the full
25     selection described in this section are given in table~\ref{tab:hlteff}.
26    
27     \begin{table}[tbph]
28     \begin{center}
29    
30     \begin{tabular}{llc} \hline \hline
31     Channel & HLT selection & HLT efficiency \\ \hline
32     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
33     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
34     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
35     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
36     \end{tabular}
37    
38     \end{center}
39 vuko 1.15 \caption{HLT Efficiencies for all the events in the generated phase space that
40     have been retained by the complete event selection.}
41 vuko 1.2 \label{tab:hlteff}
42     \end{table}
43 vuko 1.1
44 vuko 1.10
45     \begin{figure}[tbp]
46     \begin{center}
47     \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
48     \caption{Muon isolation variables for the muon associated
49 ymaravin 1.12 to the \W boson decay in $2e1\mu$ events: in the left plot
50     we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone
51     around the muon candidate; in the right plot we display the sum of
52 vuko 1.10 transverse momenta of tracks within a $\Delta R = 0.25$ cone around
53     the muon candidate. The normalization of signal and background
54     distributions is arbitrary.
55     }
56     \label{fig:mu_isol}
57     \end{center}
58     \end{figure}
59    
60     \begin{figure}[tb]
61     \begin{center}
62     \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
63     \caption{
64     Muon impact parameter significance distribution
65     in $2e1\mu$ events. The normalization of signal and background
66     distributions is arbitrary.
67     }
68     \label{fig:mu_SIP}
69     \end{center}
70     \end{figure}
71    
72    
73 vuko 1.1 \subsection{Lepton identification}
74 vuko 1.2 \label{sec:leptonId}
75 vuko 1.1
76 vuko 1.2 The requirements used for electron identification in this analysis are described
77     in~\cite{noteElectronID}.
78    
79     Muon candidates are selected from global muons, which are reconstructed
80 ymaravin 1.12 by combining measurements in the muon chambers and the central tracker.
81     An additional isolation criterion is imposed to require the energy
82 vuko 1.2 measured in the calorimeters within a $\Delta R = 0.3$ cone around the
83 ymaravin 1.12 muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks
84     within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV.
85 vuko 1.7 These cuts reduce the background from muons originated in
86 vuko 1.2 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
87     and clusters from the other \b-quark decay products.
88 vuko 1.16 The signal and background distributions of these isolation variables
89     are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate
90     events.
91 vuko 1.2
92     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
93     %performance of the isolation cut. The distribution of the isolation
94     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
95     %interesting, since muons only stem from \b-quark decays.
96 vuko 1.1
97 vuko 1.3 The significance of the muon impact parameter in the plane
98     transverse to the beam, $S_{IP}$, discriminates against leptons from
99 ymaravin 1.12 heavy-quark decays in all standard model background processes. This
100 vuko 1.3 variable is defined as the ratio between the measured impact parameter
101     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
102 ymaravin 1.12 satisfy $S_{IP}<3$. This requirement is applied only for muon candidates
103     and not for electrons. For electron candidates, a significant fraction of the
104     background comes from misidentified light quark jets. Thus,
105     the requirement on the impact parameter significance does not
106     increase the significance of the $\W\to e$ channels, as can be seen in
107 vuko 1.16 Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon
108     in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}.
109 vuko 1.3
110 vuko 1.19 The muons fullfilling all these requirements will be called ``tight'', while global
111     muons without requirements on isolation or impact parameter significance are called ``loose''.
112    
113 vuko 1.10 \begin{figure}[p]
114     \begin{center}
115     \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
116     \caption{Efficiency for signal and background as a function
117 ymaravin 1.12 of the requirement on the \W-boson lepton impact parameter
118     significance. All other criteria but the one on impact parameter
119     significance are applied.
120 vuko 1.15 % Only events with 81 GeV $< M_Z < $ 101 \gev
121 vuko 1.10 % are considered.
122     }
123     \label{fig:wl_IP_eff}
124     \end{center}
125     %\end{figure}
126    
127     %\begin{figure}[bt]
128     \begin{center}
129     \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
130 ymaravin 1.12 \caption{Signal significance as a function of requirement on
131     the \W-boson lepton impact parameter significance. All other criteria but
132     the requirement on the impact parameter significance are applied.
133 vuko 1.15 % Only events with 81 GeV $< M_Z < $ 101 \gev are considered.
134 vuko 1.10 }
135     \label{fig:wl_IP_SvsCut}
136     \end{center}
137     \end{figure}
138 vuko 1.3
139 vuko 1.1
140 vuko 1.7 \begin{table}[tbp]
141     \begin{tabular}{|l|c|c|c|c|} \hline
142     & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
143     \multicolumn{5}{|c|}{Lepton selection} \\ \hline
144 ymaravin 1.13 Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\
145     & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} & \\ \hline
146 vuko 1.7 Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
147     & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
148     & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
149     HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
150     & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
151 ymaravin 1.13 \multicolumn{5}{|c|}{\Z reconstruction} \\ \hline
152     Lepton cuts & \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\
153 vuko 1.7 Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
154 ymaravin 1.13 Second \Z veto & \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
155     \multicolumn{5}{|c|}{\W lepton selection} \\ \hline
156 vuko 1.7
157     Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
158     Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
159    
160     \end{tabular}
161 ymaravin 1.13 \caption{Summary of the criteria we use to select \WZ\ final state}
162 vuko 1.7 \label{tab:allcuts}
163     \end{table}
164    
165    
166     \begin{figure}[p]
167     \begin{center}
168     \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
169     \caption{Efficiency for signal and background as a function
170     of the cut value on the \W-boson lepton transverse momentum.
171     All other cuts but the cut on this variable are applied.
172 vuko 1.15 Only events with 81 GeV $< M_Z < $ 101 \gev
173 vuko 1.7 are considered.}
174     \label{fig:wlpt_cuteff}
175     \end{center}
176     %\end{figure}
177    
178     %\begin{figure}[bt]
179     \begin{center}
180     \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
181     \caption{Signal significance as a function of the cut value on
182     the \W-boson lepton transverse momentum. All other cuts but
183     the cut on this variable are applied. Only events with
184 vuko 1.15 81 GeV $< M_Z < $ 101 \gev are considered.}
185 vuko 1.7 \label{fig:wlpt_cutS}
186     \end{center}
187     \end{figure}
188    
189    
190 vuko 1.1 \subsection{\WZ candidate selection}
191    
192 vuko 1.2 Events are accepted if they contain at least three charged leptons,
193 ymaravin 1.13 either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
194     electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}.
195 vuko 1.2
196     The \WZ candidate selection proceeds from building all possible
197     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
198 ymaravin 1.13 For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements
199 vuko 1.2 defined in~\cite{noteElectronID}.
200    
201 ymaravin 1.13 Events are retained if the mass of the \Z boson candidate is
202     within 20 GeV of the \Z boson mass, $m_Z$. The event is
203     rejected if a second \Z candidate is found. This second \Z boson candidate is formed
204     using all possible same-flavour opposite-charge combinations which are left
205     after removing the two leptons already used for the first \Z boson candidate. This
206     secondary \Z boson veto helps to suppress $\Z\Z$ events.
207 vuko 1.11 %The invariant
208     %mass distribution for accepted \Z candidates is shown in
209     %Figure~\ref{fig:zcandidates}.
210 vuko 1.2
211     % and the \Z mass resolution is shown in
212     %Figure~\ref{fig:dzmass}.
213    
214 ymaravin 1.13 After the \Z boson candidate is identified, the remaining leptons in the event
215 vuko 1.15 are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID}
216     or, for muons, all criteria described in section~\ref{sec:leptonId}.
217 ymaravin 1.13 If more than one lepton candidate satisfies the tight requirements, the one with the
218     highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective
219     discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}).
220     We require the transverse momentum to exceed 20 GeV, as it maximizes
221     the significance of the \WZ\ signal with respect to background as shown in
222 vuko 1.15 Fig.~\ref{fig:wlpt_cutS}.
223 ymaravin 1.13
224     An additional requirement on the isolation between electron and muon candidates is applied
225     for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron
226     candidate associated with the \W boson decay and any of the two muons associated with
227     the \Z boson decay to be greater than 0.1.
228    
229     This requirement allows suppressing the contribution of $\Z \to \mu\mu$
230 vuko 1.6 decays, where one of the two muons radiates a photon which is reconstructed
231 vuko 1.19 as an electron, possibly after conversion.
232     % ADD THE PLOT TO JUSTIFY THIS COMMENT
233     % This can be seen as a peak in the dimuon
234     %invariant mass at around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}.
235 vuko 1.6
236 ymaravin 1.13 The summary of the selection criteria is given in Table~\ref{tab:allcuts}.
237 vuko 1.7
238 ymaravin 1.13 The expected number of the events satisfying the sequential steps of the selection
239     is listed in Tables~\ref{tab:sel-effA}.
240     In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for different
241     \W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z
242     boson decays are almost always are reconstructed with the correct flavor. As expected,
243     there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$
244     decays. However, this contribution is suppressed, mostly due to $p_T$ requirement
245     on the third lepton, as leptons from $\tau$ decays are not as energetic as those from
246     $\W \to \ell \nu$ processes.
247    
248 vuko 1.15 In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we
249 ymaravin 1.13 display the fraction of reconstructed \WZ events with correctly-matched leptons.
250     It can be seen that the lepton associated with the \W boson decay is correctly matched
251     to the true Monte Carlo lepton from the \W boson decay in more than 90\% of
252     the cases, even for events with several lepton candidates available to be associated
253     to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is,
254     therefore, justified.
255 vuko 1.11
256 vuko 1.3 \begin{table}[p]
257     \begin{center}
258    
259 vuko 1.17 \begin{tabular}{lcc|cc|cc|cc|} \hline
260 ymaravin 1.13 \multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
261 ymaravin 1.18 Step & $\WZ \to 3e\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
262 vuko 1.17 All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
263 ymaravin 1.18 Found $\Z \to ee$ & 73.9 & 39.9\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.353\% & $2.78\cdot 10^4$ & 19.4\% \\
264     Second \Z veto & 73.9 & 100\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\
265     Found $\W \to e\nu$ & 37.4 & 50.6\% & 310 & 0.062\% & 13.8 & 0.474\% & 171 & 0.61\% \\
266     \W lepton $p_T$ cut & 32.5 & 86.7\% & 86.8 & 28\% & 8.26 & 59.7\% & 23.4 & 13.7\% \\
267     Passes HLT & 32.3 & 99.6\% & 86.8 & 100\% & 8.26 & 100\% & 23.3 & 99.7\% \\
268     \Z mass window & 29.5 & 91.2\% & 51.9 & 59.8\% & 3.26 & 39.5\% & 17.3 & 74\% \\
269 vuko 1.17 \hline
270 ymaravin 1.18 Overall efficiency & & 15.9\% & & 0.00089\% & & 0.00039\% & & 0.012\% \\
271 vuko 1.17 \hline
272 ymaravin 1.18
273 ymaravin 1.13 \multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
274 ymaravin 1.18 Step & $\WZ \to 2e1\mu\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{t}\ell\ell$ & $ \epsilon$\\ \hline
275 vuko 1.17 All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
276 ymaravin 1.18 Found $\Z \to ee$ & 63.8 & 34.5\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.35\% & $2.78\cdot 10^4$ & 19.4\% \\
277     Second \Z veto & 63.7 & 99.9\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\
278     Found $\W \to \mu\nu$ & 42.6 & 66.8\% & $2.19\cdot 10^3$ & 0.44\% & 55.6 & 1.91\% & 748 & 2.69\% \\
279     \W lepton $p_T$ cut & 35.1 & 82.5\% & 9.58 & 0.44\% & 16.4 & 29.5\% & 9.49 & 1.27\% \\
280     Passes HLT & 34.3 & 97.6\% & 8.32 & 86.9\% & 14.1 & 86\% & 9.12 & 96.1\% \\
281     \Z mass window & 30.8 & 89.8\% & 7.31 & 87.9\% & 3.76 & 26.7\% & 8 & 87.8\% \\
282 vuko 1.17 \hline
283 ymaravin 1.18 Overall efficiency & & 16.7\% & & 0.00013\% & & 0.00045\% & & 0.0056\% \\
284 vuko 1.17 \hline
285 ymaravin 1.18
286 ymaravin 1.13 \multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
287 ymaravin 1.18 Step & $\WZ \to 2\mu1e$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
288 vuko 1.17 All events & 190 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
289 ymaravin 1.18 Found $\Z \to \mu\mu$ & 75.2 & 39.7\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\
290     Second \Z veto & 75.2 & 100\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\
291     Found $\W \to e\nu$ & 44 & 58.5\% & 702 & 0.12\% & 15.1 & 0.54\% & 213 & 0.67\% \\
292     \W lepton $p_T$ cut & 38.4 & 87.2\% & 464 & 66.2\% & 10.3 & 68\% & 50.5 & 23.7\% \\
293     $\Delta R(e,\mu)$ cut & 38.4 & 99.9\% & 93 & 20\% & 7.15 & 69.6\% & 23.3 & 46\% \\
294     Passes HLT & 37.3 & 97.1\% & 88.8 & 95.5\% & 6.62 & 92.7\% & 23.1 & 99.4\% \\
295     \Z mass window & 33.6 & 90.1\% & 50.3 & 56.6\% & 2.84 & 42.9\% & 18.8 & 81.4\% \\
296 vuko 1.17 \hline
297 ymaravin 1.18 Overall efficiency & & 17.7\% & & 0.00086\% & & 0.00034\% & & 0.013\% \\
298 vuko 1.17 \hline
299     %\end{tabular}
300     %\begin{tabular}{lcc|cc|cc|cc|} \hline
301 ymaravin 1.13 \multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
302 ymaravin 1.18 Step & $\WZ \to 3\mu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
303 vuko 1.17 All events & 189 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
304 ymaravin 1.18 Found $\Z \to \mu\mu$ & 83.8 & 44.3\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\
305     Second \Z veto & 83.6 & 99.8\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\
306     Found $\W \to \mu\nu$ & 51.8 & 62\% & $2.52\cdot 10^3$ & 0.44\% & 34.8 & 1.25\% & 810 & 2.54\% \\
307     \W lepton $p_T$ cut & 42.5 & 81.9\% & 1.84 & 0.07\% & 1.16 & 3.33\% & 8.89 & 1.1\% \\
308     Passes HLT & 42.2 & 99.4\% & 1.84 & 100\% & 1.16 & 100\% & 8.89 & 100\% \\
309     \Z mass window & 38.5 & 91.1\% & 1.84 & 100\% & 1.16 & 100\% & 7.78 & 87.5\% \\
310 vuko 1.17 \hline
311 ymaravin 1.18 Overall efficiency & & 20.3\% & & 0.000032\% & & 0.00014\% & & 0.0054\% \\
312 vuko 1.3 \hline
313     \end{tabular}
314 vuko 1.9
315 vuko 1.3 \caption{Expected number of signal and background events passing the different
316 ymaravin 1.13 selections steps together with the efficiency of each requirement and total efficiency of
317     selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
318 vuko 1.3 of 1 \invfb.}
319     \label{tab:sel-effA}
320     \end{center}
321     \end{table}
322    
323 vuko 1.11 \begin{table}[p]
324 vuko 1.7 \begin{center}
325 ymaravin 1.13 \begin{tabular}{l|ccccc}
326 vuko 1.7 \hline \hline
327 ymaravin 1.13 & \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\
328     Reconstruction channel & $e \nu$
329     & $\mu \nu $
330     & $\tau \nu \to e \nu \nu $
331     & $\tau \nu \to \mu \nu \nu $
332     & $\tau \nu \to {\rm hadrons~} \nu$
333 vuko 1.7 \\ \hline
334 ymaravin 1.18 $3e$ & 17.4\% & 0.0319\% & 6.42\% & 0\% & 0.162\% \\
335     $2e1\mu$ & 0\% & 18.6\% & 0\% & 5.53\% & 0.0485\% \\
336     $2\mu1e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
337     $3\mu$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
338 vuko 1.7 \hline \hline
339 ymaravin 1.13
340     & \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\
341     Reconstruction channel & $e\nu$
342     & $\mu\nu$
343     & $\tau\nu \to e\nu\nu$
344     & $\tau\nu \to \mu\nu\nu$
345     & $\tau\nu \to {\rm hadrons~}\nu$
346 vuko 1.7 \\ \hline
347 ymaravin 1.18 $3e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
348     $2e1\mu$ & 0.0104\% & 0\% & 0\% & 0\% & 0\% \\
349     $2\mu1e$ & 19.6\% & 0.0208\% & 5.56\% & 0\% & 0.18\% \\
350     $3\mu$ & 0\% & 23.4\% & 0.0573\% & 6.77\% & 0.0164\% \\
351 vuko 1.7 \hline \hline
352     \end{tabular}
353     \end{center}
354     \caption{Selection efficiency for signal events in the four selection channels for the different
355     generated \W and \Z decay channels.}
356     \label{tab:wz-effimatrix}
357    
358 vuko 1.11 %\end{table}
359     %\begin{table}[tbp]
360 vuko 1.7 \begin{center}
361     \begin{tabular}{llcc} \hline
362 ymaravin 1.13 & & \multicolumn{2}{c}{Generated decay} \\
363     & & \multicolumn{2}{c}{$\Z \to ee $} \\
364     Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ \\
365 vuko 1.7 \hline \hline
366     \multicolumn{4}{c}{all} \\ \hline
367 ymaravin 1.13 $3e$ & all & 1644 events & 3 events \\
368     $3e$ & matched \Z & 93$\pm$1\% & 100\%\\
369     $3e$ & matched \W & 92$\pm$1\% & 0\\
370     $3e$ & matched \WZ & 91$\pm$1\% & 0\\
371     \hline \hline
372    
373     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
374     $3e$ & all & 1602 events & 0 events \\
375     $3e$ & matched \Z & 94$\pm$1\% & 0\\
376     $3e$ & matched \W & 92$\pm$1\% & 0\\
377     $3e$ & matched \WZ & 91$\pm$1\% & 0\\
378     \hline \hline
379    
380     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
381     $3e$ & all & 42 events & 3 events \\
382     $3e$ & matched \Z & 93$\pm$4\% & 100\%\\
383     $3e$ & matched \W & 91 $\pm$5\% & 0\\
384     $3e$ & matched \WZ & 91$\pm$5\% & 0\\
385 vuko 1.7 \hline \hline
386 ymaravin 1.13
387 vuko 1.7 \multicolumn{4}{c}{all} \\ \hline
388 ymaravin 1.13 $2e1\mu$ & all & 0 events & 1746 events \\
389     $2e1\mu$ & matched \Z & 0 & 100\%\\
390     $2e1\mu$ & matched \W & 0 & 100\%\\
391     $2e1\mu$ & matched \WZ & 0 & 100\%\\
392     \hline \hline
393    
394     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
395     $2e1\mu$ & all & 0 events & 1715 events \\
396     $2e1\mu$ & matched \Z & 0 & 100\%\\
397     $2e1\mu$ & matched \W & 0 & 100\%\\
398     $2e1\mu$ & matched \WZ & 0 & 100\%\\
399 vuko 1.7 \hline \hline
400 ymaravin 1.13
401     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
402 vuko 1.7 $2e1\mu$ & all & 0 & 31 \\
403 ymaravin 1.13 $2e1\mu$ & matched \Z & 0 & 100\%\\
404     $2e1\mu$ & matched \W & 0 & 100\%\\
405     $2e1\mu$ & matched \WZ & 0 & 100\% \\ \hline \hline
406 vuko 1.7 \end{tabular}
407     \end{center}
408     \caption{Fractions of events with correctly matched leptons
409     to true decay product of \W and \Z decays for final states
410     with generated $\Z\to ee$ decays}
411     \label{tab:wz-matcheffi-Zee}
412     \end{table}
413    
414    
415    
416     \begin{table}[tbp]
417     \begin{center}
418     \begin{tabular}{llcc} \hline
419     & & \multicolumn{2}{c}{Generated decay:} \\
420 ymaravin 1.13 & & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\
421     Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$
422     \\
423 vuko 1.7 \hline \hline
424     \multicolumn{4}{c}{all} \\ \hline
425 ymaravin 1.13 $2\mu1e$ & all & 1895 events & 2 events \\
426     $2\mu1e$ & matched \Z & 100\% & 100\%\\
427     $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
428     $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
429     \hline \hline
430    
431     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
432     $2\mu1e$ & all & 1847 events & 0 events \\
433     $2\mu1e$ & matched \Z & 100\% & 0\\
434     $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
435     $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
436     \hline \hline
437    
438     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
439     $2\mu1e$ & all & 48 events & 2 events \\
440     $2\mu1e$ & matched \Z & 100\% & 100\%\\
441     $2\mu1e$ & matched \W & 94$\pm$3.5\%& 0\\
442     $2\mu1e$ & matched \WZ & 94$\pm$3.5\% & 0\\
443 vuko 1.7 \hline \hline
444 ymaravin 1.13
445 vuko 1.7 \multicolumn{4}{c}{all} \\ \hline
446 ymaravin 1.13 $3\mu$ & all & 0 events & 2251 events \\
447     $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
448     $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
449     $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
450     \hline \hline
451    
452     \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
453     $3\mu$ & all & 0 events & 2207 events \\
454     $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
455     $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
456     $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
457     \hline \hline
458    
459     \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
460     $3\mu$ & all & 0 events & 44 events \\
461     $3\mu$ & matched \Z & 0 & 91$\pm$4\%\\
462     $3\mu$ & matched \W & 0 & 91$\pm$4\%\\
463     $3\mu$ & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline
464 vuko 1.7 \end{tabular}
465     \end{center}
466     \caption{Fractions of MC \WZ events with correctly matched leptons
467     to true decay product of \W and \Z decays for final states
468     with generated $\Z\to \mu\mu$ decays}
469     \label{tab:wz-matcheffi-Zmumu}
470     \end{table}
471    
472 vuko 1.11
473 vuko 1.16 \subsection{Complementary studies: can we use the neutrino?}
474    
475     In $\WZ \to \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino
476     coming from the \W-boson decay leaves the detector with a significant
477     amount of energy, which should reflect in a large transverse missing
478     energy measurement. On the other side, no large MET is expected for
479     the most important background categories, especially \Zjets,
480     \Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be
481     seen in Figure~\ref{fig:met}.
482    
483     Another variable sensitive to the presence of the neutrino
484     is the W transverse mass $m_T^W$, obtained by combining the missing
485     energy vector and the lepton associated to the \W-boson decay.
486     The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}.
487     The signal yield could be extracted from that distribution.
488     This requires however additional studies and it has not been
489     done at this stage.
490    
491 vuko 1.19 %\subsection{Signal extraction}
492     %\input D0Matrix
493     \input zjetbackground
494    
495 vuko 1.16
496 vuko 1.11 \section{Systematic uncertainties}
497     \input Sys
498    
499    
500     \begin{figure}[bt]
501     \begin{center}
502     \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
503 vuko 1.17 \caption{Missing transverse energy for the four signal categories.
504 vuko 1.11 The distributions show the number of expected events
505 vuko 1.15 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev
506 vuko 1.11 are shown. All selection cuts are applied.}
507     \label{fig:met}
508     \end{center}
509     \end{figure}
510    
511     \begin{figure}[bt]
512     \begin{center}
513     \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
514 ymaravin 1.14 \caption{\W transverse mass for the four signal categories.
515 vuko 1.11 The distributions show the number of expected events
516 vuko 1.15 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown.
517 vuko 1.11 All selection cuts are applied.}
518     \label{fig:mtw}
519     \end{center}
520     \end{figure}
521    
522    
523    
524    
525