ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.6
Committed: Fri Jun 20 13:50:28 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +9 -1 lines
Log Message:
editing... fake rate estimation

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 vuko 1.2 The four possible final states of \WZ
5 vuko 1.5 production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 vuko 1.2 and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7     denoted as follows:
8     \begin{itemize}
9     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13     \end{itemize}
14    
15    
16 vuko 1.1 \subsection{Trigger selection and efficiencies}
17    
18 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
19 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
20 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
21     the HLT efficiency for selected events close to 100\%. The same
22     HLT requirements are used for channels with the same Z decay mode:
23     \begin{itemize}
24     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26     \end{itemize}
27     The HLT efficiencies for all modes for events passing the full
28     selection described in this section are given in table~\ref{tab:hlteff}.
29    
30    
31     \begin{table}[tbph]
32     \begin{center}
33    
34     \begin{tabular}{llc} \hline \hline
35     Channel & HLT selection & HLT efficiency \\ \hline
36     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
37     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
38     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
39     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
40     \end{tabular}
41    
42     \end{center}
43     \caption{HLT Efficiencies, in percent, for all
44     the events in the generated phase space for events retained by
45     the complete event selection.}
46     \label{tab:hlteff}
47     \end{table}
48 vuko 1.1
49     \subsection{Lepton identification}
50 vuko 1.2 \label{sec:leptonId}
51 vuko 1.1
52 vuko 1.2 The requirements used for electron identification in this analysis are described
53     in~\cite{noteElectronID}.
54    
55     Muon candidates are selected from global muons, which are reconstructed
56     combining measurements in the muon chambers and the central tracker.
57     An additional isolation criterion requires that the energy
58     measured in the calorimeters within a $\Delta R = 0.3$ cone around the
59     muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
60 vuko 1.3 within a $\Delta R = 0.25$ cone around the muon must be smaller than 2
61 vuko 1.2 GeV. These cuts reduce the background from muons originated in
62     \b-quark decays of the $\Zbbbar$ background, which are close to tracks
63     and clusters from the other \b-quark decay products.
64    
65     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
66     %performance of the isolation cut. The distribution of the isolation
67     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
68     %interesting, since muons only stem from \b-quark decays.
69 vuko 1.1
70 vuko 1.3 The significance of the muon impact parameter in the plane
71     transverse to the beam, $S_{IP}$, discriminates against leptons from
72     heavy-quark decays in all Standard Model background processes. This
73     variable is defined as the ratio between the measured impact parameter
74     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
75     satisfy $S_{IP}<3$. This requirement is applied only for muons
76     and not for electrons. For electrons, the dominant background
77     comes from fake electrons and not from heavy quark decays.
78    
79    
80 vuko 1.1
81     \subsection{\WZ candidate selection}
82    
83 vuko 1.2 Events are accepted if they contain at least three charged leptons,
84 vuko 1.3 either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
85     electrons,$| \eta | < 2.4$ for muons.
86     as discussed in~\ref{sec:leptonId}.
87 vuko 1.2
88     The \WZ candidate selection proceeds from building all possible
89     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
90     For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
91     defined in~\cite{noteElectronID}.
92    
93     Events are retained if the mass of this \Z-boson candidate is
94     within 20 GeV of the Z-boson mass,$m_Z$. The event is
95     rejected if a second Z candidate is found. This second Z candidate is done
96     with all possible same-flavour opposite-charge combinations which are left
97     after removing the two leptons already used for the first Z candidate. This
98     veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant
99     mass distribution for accepted \Z candidates is shown in
100     Figure~\ref{fig:zcandidates}.
101    
102     % and the \Z mass resolution is shown in
103     %Figure~\ref{fig:dzmass}.
104    
105     After the \Z-boson candidate is identified, the lepton associated
106     to the \W-boson decay is chosen from the remaining electrons and muons
107     in the event that have not been used for reconstructing the \Z-boson.
108     Electrons are required to pass the tight criteria described in
109     \cite{noteElectronID}. If the event contains more than three leptons,
110     the highest $p_t$ is chosen as the one from the \W-boson decay, and
111     the additional leptons are not considered further.
112     The transverse momentum of this lepton is required to be larger
113     than 20 GeV. This last requirement is effective in rejecting
114     the \Zbbbar and \Zjets backgrounds, and the cut value is chosen in
115     the range that maximises the significance as shown in
116     Figure~\ref{fig:s_vs_wlpt}.
117    
118 vuko 1.6 An additional requirement on the isolation between electron and muons is applied
119     for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
120     to the \W-decay and any of the two muons associated to the \Z-decay be greater than
121     0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
122     decays, where one of the two muons radiates a photon which is reconstructed
123     as electrons, possibly after conversion, which shows up as a peak at around 60 GeV
124     in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
125    
126 vuko 1.2 The expected number of events passing the various steps of the selection
127     is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
128     Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
129     the different generated \W and \Z decays. It can be seen there that \WZ\
130     events with both the \W and the \Z boson decaying into electrons or muons
131     almost always get reconstructed with the correct flavour. It is to be
132     noted in addition that each of our four selection channels gets a small
133     contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
134     selection efficiency for these events is however smaller which is mostly due
135     to the \pt cut on the third lepton, since the \pt spectrum of electrons or
136     muons from $W \to \tau \to e/\mu$ decays is softer.
137    
138 vuko 1.3 \begin{table}[p]
139     \begin{center}
140    
141     \begin{tabular}{lcccc} \hline
142     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
143     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
144     Found $Z \to ee$ & 219.517 (40.2045 \%) & 520695 (41.0674 \%) & 3474.61 (19.7914 \%) & 29563.3 (40.6254 \%) \\
145     Z loose electron ID & 219.517 (100 \%) & 520695 (100 \%) & 3474.61 (100 \%) & 29563.3 (100 \%) \\
146     Z Lepton Pt cut & 216.371 (98.5671 \%) & 515556 (99.0131 \%) & 3289.22 (94.6645 \%) & 29109.9 (98.4665 \%) \\
147     Z Lepton $eta$ cut & 216.371 (100 \%) & 515556 (100 \%) & 3289.22 (100 \%) & 29109.9 (100 \%) \\
148     Z Lepton IP cut & 206.797 (95.5751 \%) & 492205 (95.4707 \%) & 3011.11 (91.5448 \%) & 27833.5 (95.6153 \%) \\
149     Found $W \to e$ & 42.8968 (20.7434 \%) & 301.116 (0.061177 \%) & 14.8797 (0.494158 \%) & 173.054 (0.621745 \%) \\
150     W Lepton $\eta$ cut & 42.8968 (100 \%) & 301.116 (100 \%) & 14.8797 (100 \%) & 173.054 (100 \%) \\
151     W Lepton Pt cut & 35.6425 (83.0889 \%) & 86.9864 (28.8879 \%) & 9.30549 (62.5383 \%) & 23.9385 (13.833 \%) \\
152     W tight electron ID & 35.6425 (100 \%) & 86.9864 (100 \%) & 9.30549 (100 \%) & 23.9385 (100 \%) \\
153     Passes HLT & 35.4852 (99.5587 \%) & 85.9427 (98.8002 \%) & 9.30549 (100 \%) & 23.4938 (98.1424 \%) \\
154     Z mass window & 31.7106 (5.8078 \%) & 54.1554 (0.00427126 \%) & 3.2585 (0.0185605 \%) & 17.046 (0.0234243\%) \\
155     \hline
156     \end{tabular}
157    
158    
159     \begin{tabular}{lcccc} \hline
160     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
161     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
162     Found $Z \to ee$ & 219.517 (40.2045 \%) & 520695 (41.0674 \%) & 3474.61 (19.7914 \%) & 29563.3 (40.6254 \%) \\
163     Z electron ID loose & 219.517 (100 \%) & 520695 (100 \%) & 3474.61 (100 \%) & 29563.3 (100 \%) \\
164     Z Lepton Pt cut & 216.371 (98.5671 \%) & 515556 (99.0131 \%) & 3289.22 (94.6645 \%) & 29109.9 (98.4665 \%) \\
165     Z Lepton $eta$ cut & 216.371 (100 \%) & 515556 (100 \%) & 3289.22 (100 \%) & 29109.9 (100 \%) \\
166     Z Lepton IP cut & 206.797 (95.5751 \%) & 492205 (95.4707 \%) & 3011.11 (91.5448 \%) & 27833.5 (95.6153 \%) \\
167     Found $W \to \mu$ & 57.1892 (27.6547 \%) & 5982.86 (1.21552 \%) & 815.122 (27.0705 \%) & 3808.22 (13.6821 \%) \\
168     W Lepton $\eta$ cut & 57.1695 (99.9656 \%) & 5964.1 (99.6865 \%) & 815.122 (100 \%) & 3805.62 (99.9319 \%) \\
169     W $\mu$ isolation & 52.1367 (91.1967 \%) & 2754.29 (46.1811 \%) & 85.5097 (10.4904 \%) & 1328.18 (34.9004 \%) \\
170     W muon isolation & 39.8889 (76.5083 \%) & 22.2149 (0.806557 \%) & 18.8521 (22.0468 \%) & 16.6013 (1.24993 \%) \\
171     Passes HLT & 38.7683 (97.1907 \%) & 21.2077 (95.466 \%) & 16.5627 (87.8556 \%) & 16.1566 (97.3214 \%) \\
172     Z mass window & 34.6399 (6.34429 \%) & 17.3805 (0.00137081 \%) & 5.4405 (0.0309891 \%) & 14.0814 (0.0193505 \%) \\
173     \hline
174     \end{tabular}
175    
176     \begin{tabular}{lcccc} \hline
177     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
178     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
179     Found $Z \to \mu\mu$ & 326.484 (59.7955 \%) & 748256 (59.0152 \%) & 14081.6 (80.2087 \%) & 43207.1 (59.3746 \%) \\
180     Z muon isolation & 282.27 (86.4575 \%) & 669556 (89.4822 \%) & 4201.52 (29.837 \%) & 37959.1 (87.8538 \%) \\
181     Z Lepton $eta$ cut & 282.27 (100 \%) & 669547 (99.9987 \%) & 4200.47 (99.975 \%) & 37959.1 (99.9998 \%) \\
182     Z Lepton Pt cut & 274.249 (97.1584 \%) & 657267 (98.1659 \%) & 3626.81 (86.3429 \%) & 36945.8 (97.3306 \%) \\
183     Z Lepton IP cut & 249.792 (91.0824 \%) & 603257 (91.7827 \%) & 3125.35 (86.1737 \%) & 33937.7 (91.8581 \%) \\
184     Found $W \to e$ & 51.9401 (20.7933 \%) & 797.766 (0.132243 \%) & 20.4415 (0.654055 \%) & 228.342 (0.672826 \%) \\
185     W Lepton $\eta$ cut & 51.9401 (100 \%) & 797.766 (100 \%) & 20.4415 (100 \%) & 228.342 (100 \%) \\
186     W tight electron ID & 51.9401 (100 \%) & 797.766 (100 \%) & 20.4415 (100 \%) & 228.342 (100 \%) \\
187     W Lepton Pt cut & 43.2703 (83.3081 \%) & 519.647 (65.1378 \%) & 15.0823 (73.7829 \%) & 55.14 (24.148 \%)\\
188     Passes HLT & 41.8745 (96.7742 \%) & 490.859 (94.46 \%) & 13.533 (89.7275 \%) & 54.2506 (98.3871 \%) \\
189     Z mass window & 37.5298 (6.87358 \%) & 63.522 (0.00501 \%) & 5.02282 (0.02861 \%) & 20.0105 (0.0274981 \%) \\
190     \hline
191     \end{tabular}
192    
193     \begin{tabular}{lcccc} \hline
194     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
195     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
196     Found $Z \to \mu\mu$ & 326.484 (59.7955 \%) & 748256 (59.0152 \%) & 14081.6 (80.2087 \%) & 43207.1 (59.3746 \%) \\
197     Z muon isolation & 282.27 (86.4575 \%) & 669556 (89.4822 \%) & 4201.52 (29.837 \%) & 37959.1 (87.8538 \%) \\
198     Z Lepton $eta$ cut & 282.27 (100 \%) & 669547 (99.9987 \%) & 4200.47 (99.975 \%) & 37959.1 (99.9998 \%) \\
199     Z Lepton Pt cut & 274.249 (97.1584 \%) & 657267 (98.1659 \%) & 3626.81 (86.3429 \%) & 36945.8 (97.3306 \%) \\
200     Z Lepton IP cut & 249.792 (91.0824 \%) & 603257 (91.7827 \%) & 3125.35 (86.1737 \%) & 33937.7 (91.8581 \%) \\
201     Found $W \to \mu$ & 73.015 (29.2303 \%) & 7135.7 (1.18286 \%) & 774.076 (24.7677 \%) & 4435.51 (13.0696 \%) \\
202     W Lepton $\eta$ cut & 72.956 (99.9192 \%) & 7110.07 (99.6409 \%) & 774.076 (100 \%) & 4432.32 (99.9282 \%) \\
203     W $\mu$ isolation & 66.724 (91.4578 \%) & 3382.99 (47.5803 \%) & 78.3017 (10.1155 \%) & 1560.97 (35.2178 \%) \\
204     W muon isolation & 50.1118 (75.1031 \%) & 6.25174 (0.184799 \%) & 5.8096 (7.41951 \%) & 20.6775 (1.32466 \%) \\
205     Passes HLT & 49.7972 (99.3723 \%) & 6.25174 (100 \%) & 5.8096 (100 \%) & 20.6034 (99.6416 \%) \\
206     Z mass window & 45.1576 (8.27062 \%) & 4.9976 (0.000394162 \%) & 1.683 (0.00958638 \%) & 18.3059 (0.0251557 \%) \\
207     \hline
208     \end{tabular}
209     \caption{Expected number of signal and background events passing the different
210     selections steps in the \WZ, \ttbar and \Zbbbar samples for an integrated luminosity
211     of 1 \invfb.}
212     \label{tab:sel-effA}
213     \end{center}
214     \end{table}
215    
216    
217 vuko 1.1
218     \subsection{Signal extraction}
219 vuko 1.5
220 vuko 1.6 \input D0Matrix
221 vuko 1.5 \input zjetbackground
222 vuko 1.1
223    
224     \subsection{Systematic uncertainties}
225 beaucero 1.4 \input Sys
226 vuko 1.1
227    
228 vuko 1.3 \begin{figure}[bt]
229     \begin{center}
230     \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
231     \caption{W transverse mass for the four signal categories.
232     The distributions show the number of expected events
233     for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.}
234     \label{fig:mtw}
235     \end{center}
236     \end{figure}