ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.7
Committed: Fri Jun 20 17:09:36 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.6: +213 -5 lines
Log Message:
more figures and tables...

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 vuko 1.2 The four possible final states of \WZ
5 vuko 1.5 production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 vuko 1.2 and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7     denoted as follows:
8     \begin{itemize}
9     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13     \end{itemize}
14    
15    
16 vuko 1.1 \subsection{Trigger selection and efficiencies}
17    
18 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
19 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
20 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
21     the HLT efficiency for selected events close to 100\%. The same
22     HLT requirements are used for channels with the same Z decay mode:
23     \begin{itemize}
24     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26     \end{itemize}
27     The HLT efficiencies for all modes for events passing the full
28     selection described in this section are given in table~\ref{tab:hlteff}.
29    
30    
31     \begin{table}[tbph]
32     \begin{center}
33    
34     \begin{tabular}{llc} \hline \hline
35     Channel & HLT selection & HLT efficiency \\ \hline
36     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
37     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
38     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
39     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
40     \end{tabular}
41    
42     \end{center}
43     \caption{HLT Efficiencies, in percent, for all
44     the events in the generated phase space for events retained by
45     the complete event selection.}
46     \label{tab:hlteff}
47     \end{table}
48 vuko 1.1
49     \subsection{Lepton identification}
50 vuko 1.2 \label{sec:leptonId}
51 vuko 1.1
52 vuko 1.2 The requirements used for electron identification in this analysis are described
53     in~\cite{noteElectronID}.
54    
55     Muon candidates are selected from global muons, which are reconstructed
56     combining measurements in the muon chambers and the central tracker.
57     An additional isolation criterion requires that the energy
58     measured in the calorimeters within a $\Delta R = 0.3$ cone around the
59     muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
60 vuko 1.7 within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev.
61     These cuts reduce the background from muons originated in
62 vuko 1.2 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
63     and clusters from the other \b-quark decay products.
64    
65     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
66     %performance of the isolation cut. The distribution of the isolation
67     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
68     %interesting, since muons only stem from \b-quark decays.
69 vuko 1.1
70 vuko 1.3 The significance of the muon impact parameter in the plane
71     transverse to the beam, $S_{IP}$, discriminates against leptons from
72     heavy-quark decays in all Standard Model background processes. This
73     variable is defined as the ratio between the measured impact parameter
74     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
75     satisfy $S_{IP}<3$. This requirement is applied only for muons
76     and not for electrons. For electrons, the dominant background
77     comes from fake electrons and not from heavy quark decays.
78    
79    
80 vuko 1.1
81 vuko 1.7 \begin{table}[tbp]
82     \begin{tabular}{|l|c|c|c|c|} \hline
83     & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
84     \multicolumn{5}{|c|}{Lepton selection} \\ \hline
85     Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\
86     & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} & \\ \hline
87     Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
88     & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
89     & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
90     HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
91     & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
92     \multicolumn{5}{|c|}{Z reconstruction} \\ \hline
93     Lepton cuts & \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\
94     Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
95     Second Z veto & \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
96     \multicolumn{5}{|c|}{W lepton selection} \\ \hline
97    
98     Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
99     Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
100    
101     \end{tabular}
102     \caption{Summary of all cuts used in the WZ selection}
103     \label{tab:allcuts}
104     \end{table}
105    
106    
107     \begin{figure}[p]
108     \begin{center}
109     \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
110     \caption{Efficiency for signal and background as a function
111     of the cut value on the \W-boson lepton transverse momentum.
112     All other cuts but the cut on this variable are applied.
113     Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
114     are considered.}
115     \label{fig:wlpt_cuteff}
116     \end{center}
117     %\end{figure}
118    
119     %\begin{figure}[bt]
120     \begin{center}
121     \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
122     \caption{Signal significance as a function of the cut value on
123     the \W-boson lepton transverse momentum. All other cuts but
124     the cut on this variable are applied. Only events with
125     81.1 GeV $< M_Z < $ 101.1 \gev are considered.}
126     \label{fig:wlpt_cutS}
127     \end{center}
128     \end{figure}
129    
130    
131 vuko 1.1 \subsection{\WZ candidate selection}
132    
133 vuko 1.2 Events are accepted if they contain at least three charged leptons,
134 vuko 1.3 either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
135     electrons,$| \eta | < 2.4$ for muons.
136     as discussed in~\ref{sec:leptonId}.
137 vuko 1.2
138     The \WZ candidate selection proceeds from building all possible
139     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
140     For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
141     defined in~\cite{noteElectronID}.
142    
143     Events are retained if the mass of this \Z-boson candidate is
144     within 20 GeV of the Z-boson mass,$m_Z$. The event is
145     rejected if a second Z candidate is found. This second Z candidate is done
146     with all possible same-flavour opposite-charge combinations which are left
147     after removing the two leptons already used for the first Z candidate. This
148     veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant
149     mass distribution for accepted \Z candidates is shown in
150     Figure~\ref{fig:zcandidates}.
151    
152     % and the \Z mass resolution is shown in
153     %Figure~\ref{fig:dzmass}.
154    
155     After the \Z-boson candidate is identified, the lepton associated
156     to the \W-boson decay is chosen from the remaining electrons and muons
157     in the event that have not been used for reconstructing the \Z-boson.
158     Electrons are required to pass the tight criteria described in
159     \cite{noteElectronID}. If the event contains more than three leptons,
160     the highest $p_t$ is chosen as the one from the \W-boson decay, and
161     the additional leptons are not considered further.
162     The transverse momentum of this lepton is required to be larger
163     than 20 GeV. This last requirement is effective in rejecting
164 vuko 1.7 the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff},
165     and the cut value is chosen in
166 vuko 1.2 the range that maximises the significance as shown in
167 vuko 1.7 Figure~\ref{fig:wlpt_cutS}.
168 vuko 1.2
169 vuko 1.6 An additional requirement on the isolation between electron and muons is applied
170     for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
171     to the \W-decay and any of the two muons associated to the \Z-decay be greater than
172     0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
173     decays, where one of the two muons radiates a photon which is reconstructed
174     as electrons, possibly after conversion, which shows up as a peak at around 60 GeV
175     in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
176    
177 vuko 1.7 The summary of the selection can be seen in Table~\ref{tab:allcuts}.
178    
179 vuko 1.2 The expected number of events passing the various steps of the selection
180     is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
181     Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
182     the different generated \W and \Z decays. It can be seen there that \WZ\
183     events with both the \W and the \Z boson decaying into electrons or muons
184     almost always get reconstructed with the correct flavour. It is to be
185     noted in addition that each of our four selection channels gets a small
186     contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
187     selection efficiency for these events is however smaller which is mostly due
188     to the \pt cut on the third lepton, since the \pt spectrum of electrons or
189     muons from $W \to \tau \to e/\mu$ decays is softer.
190    
191 vuko 1.3 \begin{table}[p]
192     \begin{center}
193    
194     \begin{tabular}{lcccc} \hline
195     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
196     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
197     Found $Z \to ee$ & 219.517 (40.2045 \%) & 520695 (41.0674 \%) & 3474.61 (19.7914 \%) & 29563.3 (40.6254 \%) \\
198     Z loose electron ID & 219.517 (100 \%) & 520695 (100 \%) & 3474.61 (100 \%) & 29563.3 (100 \%) \\
199     Z Lepton Pt cut & 216.371 (98.5671 \%) & 515556 (99.0131 \%) & 3289.22 (94.6645 \%) & 29109.9 (98.4665 \%) \\
200     Z Lepton $eta$ cut & 216.371 (100 \%) & 515556 (100 \%) & 3289.22 (100 \%) & 29109.9 (100 \%) \\
201     Z Lepton IP cut & 206.797 (95.5751 \%) & 492205 (95.4707 \%) & 3011.11 (91.5448 \%) & 27833.5 (95.6153 \%) \\
202     Found $W \to e$ & 42.8968 (20.7434 \%) & 301.116 (0.061177 \%) & 14.8797 (0.494158 \%) & 173.054 (0.621745 \%) \\
203     W Lepton $\eta$ cut & 42.8968 (100 \%) & 301.116 (100 \%) & 14.8797 (100 \%) & 173.054 (100 \%) \\
204     W Lepton Pt cut & 35.6425 (83.0889 \%) & 86.9864 (28.8879 \%) & 9.30549 (62.5383 \%) & 23.9385 (13.833 \%) \\
205     W tight electron ID & 35.6425 (100 \%) & 86.9864 (100 \%) & 9.30549 (100 \%) & 23.9385 (100 \%) \\
206     Passes HLT & 35.4852 (99.5587 \%) & 85.9427 (98.8002 \%) & 9.30549 (100 \%) & 23.4938 (98.1424 \%) \\
207     Z mass window & 31.7106 (5.8078 \%) & 54.1554 (0.00427126 \%) & 3.2585 (0.0185605 \%) & 17.046 (0.0234243\%) \\
208     \hline
209     \end{tabular}
210    
211    
212     \begin{tabular}{lcccc} \hline
213     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
214     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
215     Found $Z \to ee$ & 219.517 (40.2045 \%) & 520695 (41.0674 \%) & 3474.61 (19.7914 \%) & 29563.3 (40.6254 \%) \\
216     Z electron ID loose & 219.517 (100 \%) & 520695 (100 \%) & 3474.61 (100 \%) & 29563.3 (100 \%) \\
217     Z Lepton Pt cut & 216.371 (98.5671 \%) & 515556 (99.0131 \%) & 3289.22 (94.6645 \%) & 29109.9 (98.4665 \%) \\
218     Z Lepton $eta$ cut & 216.371 (100 \%) & 515556 (100 \%) & 3289.22 (100 \%) & 29109.9 (100 \%) \\
219     Z Lepton IP cut & 206.797 (95.5751 \%) & 492205 (95.4707 \%) & 3011.11 (91.5448 \%) & 27833.5 (95.6153 \%) \\
220     Found $W \to \mu$ & 57.1892 (27.6547 \%) & 5982.86 (1.21552 \%) & 815.122 (27.0705 \%) & 3808.22 (13.6821 \%) \\
221     W Lepton $\eta$ cut & 57.1695 (99.9656 \%) & 5964.1 (99.6865 \%) & 815.122 (100 \%) & 3805.62 (99.9319 \%) \\
222     W $\mu$ isolation & 52.1367 (91.1967 \%) & 2754.29 (46.1811 \%) & 85.5097 (10.4904 \%) & 1328.18 (34.9004 \%) \\
223     W muon isolation & 39.8889 (76.5083 \%) & 22.2149 (0.806557 \%) & 18.8521 (22.0468 \%) & 16.6013 (1.24993 \%) \\
224     Passes HLT & 38.7683 (97.1907 \%) & 21.2077 (95.466 \%) & 16.5627 (87.8556 \%) & 16.1566 (97.3214 \%) \\
225     Z mass window & 34.6399 (6.34429 \%) & 17.3805 (0.00137081 \%) & 5.4405 (0.0309891 \%) & 14.0814 (0.0193505 \%) \\
226     \hline
227     \end{tabular}
228    
229     \begin{tabular}{lcccc} \hline
230     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
231     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
232     Found $Z \to \mu\mu$ & 326.484 (59.7955 \%) & 748256 (59.0152 \%) & 14081.6 (80.2087 \%) & 43207.1 (59.3746 \%) \\
233     Z muon isolation & 282.27 (86.4575 \%) & 669556 (89.4822 \%) & 4201.52 (29.837 \%) & 37959.1 (87.8538 \%) \\
234     Z Lepton $eta$ cut & 282.27 (100 \%) & 669547 (99.9987 \%) & 4200.47 (99.975 \%) & 37959.1 (99.9998 \%) \\
235     Z Lepton Pt cut & 274.249 (97.1584 \%) & 657267 (98.1659 \%) & 3626.81 (86.3429 \%) & 36945.8 (97.3306 \%) \\
236     Z Lepton IP cut & 249.792 (91.0824 \%) & 603257 (91.7827 \%) & 3125.35 (86.1737 \%) & 33937.7 (91.8581 \%) \\
237     Found $W \to e$ & 51.9401 (20.7933 \%) & 797.766 (0.132243 \%) & 20.4415 (0.654055 \%) & 228.342 (0.672826 \%) \\
238     W Lepton $\eta$ cut & 51.9401 (100 \%) & 797.766 (100 \%) & 20.4415 (100 \%) & 228.342 (100 \%) \\
239     W tight electron ID & 51.9401 (100 \%) & 797.766 (100 \%) & 20.4415 (100 \%) & 228.342 (100 \%) \\
240     W Lepton Pt cut & 43.2703 (83.3081 \%) & 519.647 (65.1378 \%) & 15.0823 (73.7829 \%) & 55.14 (24.148 \%)\\
241     Passes HLT & 41.8745 (96.7742 \%) & 490.859 (94.46 \%) & 13.533 (89.7275 \%) & 54.2506 (98.3871 \%) \\
242     Z mass window & 37.5298 (6.87358 \%) & 63.522 (0.00501 \%) & 5.02282 (0.02861 \%) & 20.0105 (0.0274981 \%) \\
243     \hline
244     \end{tabular}
245    
246     \begin{tabular}{lcccc} \hline
247     Step & WZ & Z+jets & TTbar+jets & bbll\\ \hline
248     All events & 546 & 1.2679e+06 & 17556.1 & 72770.4 \\
249     Found $Z \to \mu\mu$ & 326.484 (59.7955 \%) & 748256 (59.0152 \%) & 14081.6 (80.2087 \%) & 43207.1 (59.3746 \%) \\
250     Z muon isolation & 282.27 (86.4575 \%) & 669556 (89.4822 \%) & 4201.52 (29.837 \%) & 37959.1 (87.8538 \%) \\
251     Z Lepton $eta$ cut & 282.27 (100 \%) & 669547 (99.9987 \%) & 4200.47 (99.975 \%) & 37959.1 (99.9998 \%) \\
252     Z Lepton Pt cut & 274.249 (97.1584 \%) & 657267 (98.1659 \%) & 3626.81 (86.3429 \%) & 36945.8 (97.3306 \%) \\
253     Z Lepton IP cut & 249.792 (91.0824 \%) & 603257 (91.7827 \%) & 3125.35 (86.1737 \%) & 33937.7 (91.8581 \%) \\
254     Found $W \to \mu$ & 73.015 (29.2303 \%) & 7135.7 (1.18286 \%) & 774.076 (24.7677 \%) & 4435.51 (13.0696 \%) \\
255     W Lepton $\eta$ cut & 72.956 (99.9192 \%) & 7110.07 (99.6409 \%) & 774.076 (100 \%) & 4432.32 (99.9282 \%) \\
256     W $\mu$ isolation & 66.724 (91.4578 \%) & 3382.99 (47.5803 \%) & 78.3017 (10.1155 \%) & 1560.97 (35.2178 \%) \\
257     W muon isolation & 50.1118 (75.1031 \%) & 6.25174 (0.184799 \%) & 5.8096 (7.41951 \%) & 20.6775 (1.32466 \%) \\
258     Passes HLT & 49.7972 (99.3723 \%) & 6.25174 (100 \%) & 5.8096 (100 \%) & 20.6034 (99.6416 \%) \\
259     Z mass window & 45.1576 (8.27062 \%) & 4.9976 (0.000394162 \%) & 1.683 (0.00958638 \%) & 18.3059 (0.0251557 \%) \\
260     \hline
261     \end{tabular}
262     \caption{Expected number of signal and background events passing the different
263     selections steps in the \WZ, \ttbar and \Zbbbar samples for an integrated luminosity
264     of 1 \invfb.}
265     \label{tab:sel-effA}
266     \end{center}
267     \end{table}
268    
269    
270 vuko 1.1
271     \subsection{Signal extraction}
272 vuko 1.5
273 vuko 1.6 \input D0Matrix
274 vuko 1.5 \input zjetbackground
275 vuko 1.1
276    
277     \subsection{Systematic uncertainties}
278 beaucero 1.4 \input Sys
279 vuko 1.1
280    
281 vuko 1.3 \begin{figure}[bt]
282     \begin{center}
283 vuko 1.7 \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
284     \caption{Missing transverse mass for the four signal categories.
285     The distributions show the number of expected events
286     for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
287     are shown. All selection cuts are applied.}
288     \label{fig:met}
289     \end{center}
290     \end{figure}
291    
292     \begin{figure}[bt]
293     \begin{center}
294 vuko 1.3 \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
295     \caption{W transverse mass for the four signal categories.
296     The distributions show the number of expected events
297 vuko 1.7 for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.
298     All selection cuts are applied.}
299 vuko 1.3 \label{fig:mtw}
300     \end{center}
301     \end{figure}
302 vuko 1.7
303    
304    
305    
306     \begin{table}[tbp]
307     \begin{center}
308     \begin{tabular}{lccccc}
309     \hline \hline
310     & \multicolumn{5}{c}{$Z \to ee $} \\
311     & $W \to e$
312     & $W \to \mu$
313     & $W \to \tau \to e$
314     & $W \to \tau \to \mu$
315     & $W \to \tau \to hadrons$
316     \\ \hline
317     $3e$ & 17.4 \% & 0.0319 \% & 6.42 \% & 0 \% & 0.162 \% \\
318     $2e1\mu$ & 0 \% & 18.6 \% & 0 \% & 5.53 \% & 0.0485 \% \\
319     $2\mu1e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
320     $3\mu$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
321     \hline \hline
322     & \multicolumn{5}{c}{$Z \to \mu\mu $} \\
323     & $W \to e$
324     & $W \to \mu$
325     & $W \to \tau \to e$
326     & $W \to \tau \to \mu$
327     & $W \to \tau \to hadrons$
328     \\ \hline
329     $3e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
330     $2e1\mu$ & 0.0104 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
331     $2\mu1e$ & 19.6 \% & 0.0208 \% & 5.56 \% & 0 \% & 0.18 \% \\
332     $3\mu$ & 0 \% & 23.4 \% & 0.0573 \% & 6.77 \% & 0.0164 \% \\
333     \hline \hline
334     \end{tabular}
335     \end{center}
336     \caption{Selection efficiency for signal events in the four selection channels for the different
337     generated \W and \Z decay channels.}
338     \label{tab:wz-effimatrix}
339     \end{table}
340    
341    
342     \begin{table}[tbp]
343     \begin{center}
344     \begin{tabular}{llcc} \hline
345     & & \multicolumn{2}{c}{Generated decay:} \\
346     & & \multicolumn{2}{c}{$Z \to ee $} \\
347     Selection channel & & $W \to e$ & $W \to \mu$ \\ \hline
348     \hline \hline
349     \multicolumn{4}{c}{all} \\ \hline
350     $3e$ & all & 1644 & 3 \\
351     $3e$ & matched Z & 0.937+/-0.00598 & 1+/-0\\
352     $3e$ & matched W & 0.915+/-0.00688 & 0+/--1\\
353     $3e$ & matched WZ & 0.914+/-0.00691 & 0+/--1\\
354     \hline \hline
355     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
356     $3e$ & all & 1602 & 0 \\
357     $3e$ & matched Z & 0.938+/-0.00604 & -1+/--1\\
358     $3e$ & matched W & 0.915+/-0.00696 & -1+/--1\\
359     $3e$ & matched WZ & 0.914+/-0.00699 & -1+/--1\\
360     \hline \hline
361     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
362     $3e$ & all & 42 & 3 \\
363     $3e$ & matched Z & 0.929+/-0.0397 & 1+/-0\\
364     $3e$ & matched W & 0.905+/-0.0453 & 0+/--1\\
365     $3e$ & matched WZ & 0.905+/-0.0453 & 0+/--1\\
366     \hline \hline
367     \multicolumn{4}{c}{all} \\ \hline
368     $2e1\mu$ & all & 0 & 1746 \\
369     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000573\\
370     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
371     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000573\\
372     \hline \hline
373     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
374     $2e1\mu$ & all & 0 & 1715 \\
375     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000583\\
376     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
377     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000583\\
378     \hline \hline
379     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
380     $2e1\mu$ & all & 0 & 31 \\
381     $2e1\mu$ & matched Z & -1+/--1 & 1+/-0\\
382     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
383     $2e1\mu$ & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline
384     \end{tabular}
385     \end{center}
386     \caption{Fractions of events with correctly matched leptons
387     to true decay product of \W and \Z decays for final states
388     with generated $\Z\to ee$ decays}
389     \label{tab:wz-matcheffi-Zee}
390     \end{table}
391    
392    
393    
394     \begin{table}[tbp]
395     \begin{center}
396     \begin{tabular}{llcc} \hline
397     & & \multicolumn{2}{c}{Generated decay:} \\
398     & & \multicolumn{2}{c}{$Z \to \mu\mu $} \\
399     Selection channel & & $W \to e$ & $W \to \mu$
400     \\ \hline
401     \hline \hline
402     \multicolumn{4}{c}{all} \\ \hline
403     $2\mu1e$ & all & 1895 & 2 \\
404     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
405     $2\mu1e$ & matched W & 0.985+/-0.00282 & 0+/--1\\
406     $2\mu1e$ & matched WZ & 0.985+/-0.00282 & 0+/--1\\
407     \hline \hline
408     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
409     $2\mu1e$ & all & 1847 & 0 \\
410     $2\mu1e$ & matched Z & 1+/-0 & -1+/--1\\
411     $2\mu1e$ & matched W & 0.986+/-0.00274 & -1+/--1\\
412     $2\mu1e$ & matched WZ & 0.986+/-0.00274 & -1+/--1\\
413     \hline \hline
414     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
415     $2\mu1e$ & all & 48 & 2 \\
416     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
417     $2\mu1e$ & matched W & 0.938+/-0.0349 & 0+/--1\\
418     $2\mu1e$ & matched WZ & 0.938+/-0.0349 & 0+/--1\\
419     \hline \hline
420     \multicolumn{4}{c}{all} \\ \hline
421     $3\mu$ & all & 0 & 2251 \\
422     $3\mu$ & matched Z & -1+/--1 & 0.943+/-0.00488\\
423     $3\mu$ & matched W & -1+/--1 & 0.933+/-0.00526\\
424     $3\mu$ & matched WZ & -1+/--1 & 0.933+/-0.00526\\
425     \hline \hline
426     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
427     $3\mu$ & all & 0 & 2207 \\
428     $3\mu$ & matched Z & -1+/--1 & 0.944+/-0.0049\\
429     $3\mu$ & matched W & -1+/--1 & 0.934+/-0.00529\\
430     $3\mu$ & matched WZ & -1+/--1 & 0.934+/-0.00529\\
431     \hline \hline
432     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
433     $3\mu$ & all & 0 & 44 \\
434     $3\mu$ & matched Z & -1+/--1 & 0.909+/-0.0433\\
435     $3\mu$ & matched W & -1+/--1 & 0.909+/-0.0433\\
436     $3\mu$ & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline
437     \end{tabular}
438     \end{center}
439     \caption{Fractions of MC \WZ events with correctly matched leptons
440     to true decay product of \W and \Z decays for final states
441     with generated $\Z\to \mu\mu$ decays}
442     \label{tab:wz-matcheffi-Zmumu}
443     \end{table}
444