ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.9
Committed: Sat Jun 21 09:48:32 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
Changes since 1.8: +48 -57 lines
Log Message:
updating eff by step table

File Contents

# User Rev Content
1 vuko 1.1 \section{Event reconstruction}
2     \label{sec:eventReconstruction}
3    
4 vuko 1.2 The four possible final states of \WZ
5 vuko 1.5 production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 vuko 1.2 and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7     denoted as follows:
8     \begin{itemize}
9     \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10     \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11     \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12     \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13     \end{itemize}
14    
15    
16 vuko 1.1 \subsection{Trigger selection and efficiencies}
17    
18 vuko 1.2 Events stemming from the three-lepton final states of $\WZ$ production
19 beaucero 1.4 are collected by the electron and/or muon triggers. For each channel,
20 vuko 1.2 a minimun number of HLT requirements is chosen while keeping
21     the HLT efficiency for selected events close to 100\%. The same
22     HLT requirements are used for channels with the same Z decay mode:
23     \begin{itemize}
24     \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25     \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26     \end{itemize}
27     The HLT efficiencies for all modes for events passing the full
28     selection described in this section are given in table~\ref{tab:hlteff}.
29    
30    
31     \begin{table}[tbph]
32     \begin{center}
33    
34     \begin{tabular}{llc} \hline \hline
35     Channel & HLT selection & HLT efficiency \\ \hline
36     $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
37     $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
38     $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
39     $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
40     \end{tabular}
41    
42     \end{center}
43     \caption{HLT Efficiencies, in percent, for all
44     the events in the generated phase space for events retained by
45     the complete event selection.}
46     \label{tab:hlteff}
47     \end{table}
48 vuko 1.1
49     \subsection{Lepton identification}
50 vuko 1.2 \label{sec:leptonId}
51 vuko 1.1
52 vuko 1.2 The requirements used for electron identification in this analysis are described
53     in~\cite{noteElectronID}.
54    
55     Muon candidates are selected from global muons, which are reconstructed
56     combining measurements in the muon chambers and the central tracker.
57     An additional isolation criterion requires that the energy
58     measured in the calorimeters within a $\Delta R = 0.3$ cone around the
59     muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
60 vuko 1.7 within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev.
61     These cuts reduce the background from muons originated in
62 vuko 1.2 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
63     and clusters from the other \b-quark decay products.
64    
65     %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
66     %performance of the isolation cut. The distribution of the isolation
67     %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
68     %interesting, since muons only stem from \b-quark decays.
69 vuko 1.1
70 vuko 1.3 The significance of the muon impact parameter in the plane
71     transverse to the beam, $S_{IP}$, discriminates against leptons from
72     heavy-quark decays in all Standard Model background processes. This
73     variable is defined as the ratio between the measured impact parameter
74     and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
75     satisfy $S_{IP}<3$. This requirement is applied only for muons
76 vuko 1.9 and not for electrons. For electrons, a significant fraction of the
77     background comes from fake electrons and not from heavy quark decays,
78     and a cut on the impact parameter significance shows no improvement
79     in significance there.
80 vuko 1.3
81    
82 vuko 1.1
83 vuko 1.7 \begin{table}[tbp]
84     \begin{tabular}{|l|c|c|c|c|} \hline
85     & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
86     \multicolumn{5}{|c|}{Lepton selection} \\ \hline
87     Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\
88     & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} & \\ \hline
89     Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
90     & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
91     & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
92     HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
93     & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
94     \multicolumn{5}{|c|}{Z reconstruction} \\ \hline
95     Lepton cuts & \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\
96     Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
97     Second Z veto & \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
98     \multicolumn{5}{|c|}{W lepton selection} \\ \hline
99    
100     Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
101     Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
102    
103     \end{tabular}
104     \caption{Summary of all cuts used in the WZ selection}
105     \label{tab:allcuts}
106     \end{table}
107    
108    
109     \begin{figure}[p]
110     \begin{center}
111     \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
112     \caption{Efficiency for signal and background as a function
113     of the cut value on the \W-boson lepton transverse momentum.
114     All other cuts but the cut on this variable are applied.
115     Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
116     are considered.}
117     \label{fig:wlpt_cuteff}
118     \end{center}
119     %\end{figure}
120    
121     %\begin{figure}[bt]
122     \begin{center}
123     \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
124     \caption{Signal significance as a function of the cut value on
125     the \W-boson lepton transverse momentum. All other cuts but
126     the cut on this variable are applied. Only events with
127     81.1 GeV $< M_Z < $ 101.1 \gev are considered.}
128     \label{fig:wlpt_cutS}
129     \end{center}
130     \end{figure}
131    
132    
133 vuko 1.1 \subsection{\WZ candidate selection}
134    
135 vuko 1.2 Events are accepted if they contain at least three charged leptons,
136 vuko 1.3 either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
137     electrons,$| \eta | < 2.4$ for muons.
138     as discussed in~\ref{sec:leptonId}.
139 vuko 1.2
140     The \WZ candidate selection proceeds from building all possible
141     \Z-boson candidates from same-flavour opposite-charge lepton pairs.
142     For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
143     defined in~\cite{noteElectronID}.
144    
145     Events are retained if the mass of this \Z-boson candidate is
146     within 20 GeV of the Z-boson mass,$m_Z$. The event is
147     rejected if a second Z candidate is found. This second Z candidate is done
148     with all possible same-flavour opposite-charge combinations which are left
149     after removing the two leptons already used for the first Z candidate. This
150     veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant
151     mass distribution for accepted \Z candidates is shown in
152     Figure~\ref{fig:zcandidates}.
153    
154     % and the \Z mass resolution is shown in
155     %Figure~\ref{fig:dzmass}.
156    
157     After the \Z-boson candidate is identified, the lepton associated
158     to the \W-boson decay is chosen from the remaining electrons and muons
159     in the event that have not been used for reconstructing the \Z-boson.
160     Electrons are required to pass the tight criteria described in
161     \cite{noteElectronID}. If the event contains more than three leptons,
162     the highest $p_t$ is chosen as the one from the \W-boson decay, and
163     the additional leptons are not considered further.
164     The transverse momentum of this lepton is required to be larger
165     than 20 GeV. This last requirement is effective in rejecting
166 vuko 1.7 the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff},
167     and the cut value is chosen in
168 vuko 1.2 the range that maximises the significance as shown in
169 vuko 1.7 Figure~\ref{fig:wlpt_cutS}.
170 vuko 1.2
171 vuko 1.6 An additional requirement on the isolation between electron and muons is applied
172     for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
173     to the \W-decay and any of the two muons associated to the \Z-decay be greater than
174     0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
175     decays, where one of the two muons radiates a photon which is reconstructed
176     as electrons, possibly after conversion, which shows up as a peak at around 60 GeV
177     in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
178    
179 vuko 1.7 The summary of the selection can be seen in Table~\ref{tab:allcuts}.
180    
181 vuko 1.2 The expected number of events passing the various steps of the selection
182     is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
183     Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
184     the different generated \W and \Z decays. It can be seen there that \WZ\
185     events with both the \W and the \Z boson decaying into electrons or muons
186     almost always get reconstructed with the correct flavour. It is to be
187     noted in addition that each of our four selection channels gets a small
188     contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
189     selection efficiency for these events is however smaller which is mostly due
190     to the \pt cut on the third lepton, since the \pt spectrum of electrons or
191     muons from $W \to \tau \to e/\mu$ decays is softer.
192    
193 vuko 1.3 \begin{table}[p]
194     \begin{center}
195    
196 vuko 1.9
197    
198    
199 vuko 1.3 \begin{tabular}{lcccc} \hline
200 vuko 1.9 \multicolumn{5}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
201     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
202     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
203     Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\
204     Found $W \to e$ & 41.9925 (20.4872 \%) & 171.053 (0.615286 \%) & 309.563 (0.0616238 \%) & 13.8293 (0.473511 \%) \\
205     W Lepton Pt cut & 34.8561 (83.0056 \%) & 23.7161 (13.8648 \%) & 86.7924 (28.037 \%) & 8.25515 (59.6931 \%) \\
206     Passes HLT & 34.7185 (99.6052 \%) & 23.5679 (99.375 \%) & 86.7924 (100 \%) & 8.25515 (100 \%) \\
207     Z mass window & 31.5533 (90.8834 \%) & 17.4906 (74.2138 \%) & 51.8927 (59.7894 \%) & 3.2585 (39.4724 \%) \\ \hline
208     Overall efficiency & 5.77899 \% & 0.0240354 \% & 0.00409279 \% & 0.0185605 \% \\
209 vuko 1.3 \hline
210     \end{tabular}
211     \begin{tabular}{lcccc} \hline
212 vuko 1.9 \multicolumn{5}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
213     Step & WZ & bbll & Z+jets & \ttjets\\ \hline
214     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
215     Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\
216     Found $W \to \mu$ & 47.9099 (23.3743 \%) & 747.725 (2.68961 \%) & 2194.09 (0.436771 \%) & 56.7645 (1.9436 \%) \\
217     W Lepton Pt cut & 37.0973 (77.4313 \%) & 9.63467 (1.28853 \%) & 9.57604 (0.436446 \%) & 17.5382 (30.8965 \%) \\
218     Passes HLT & 36.1929 (97.5623 \%) & 9.26411 (96.1538 \%) & 8.32189 (86.9033 \%) & 15.2488 (86.9457 \%) \\
219     Z mass window & 32.5166 (89.8425 \%) & 8.15242 (88 \%) & 7.31467 (87.8968 \%) & 4.91533 (32.2343 \%) \\ \hline
220     Overall efficiency & 5.95542 \% & 0.0112029 \% & 0.000576911 \% & 0.0279978 \% \\
221 vuko 1.3 \hline
222     \end{tabular}
223    
224     \begin{tabular}{lcccc} \hline
225 vuko 1.9 \multicolumn{5}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
226     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
227     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
228     Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\
229     Found $W \to e$ & 48.7553 (20.8579 \%) & 213.519 (0.669562 \%) & 701.695 (0.121557 \%) & 15.1085 (0.543704 \%) \\
230     W Lepton Pt cut & 40.6556 (83.3871 \%) & 50.6191 (23.707 \%) & 464.493 (66.196 \%) & 10.2745 (68.0047 \%) \\
231     $\Delta R(e,\mu)$ cut & 40.5573 (99.7582 \%) & 23.3456 (46.1201 \%) & 92.9813 (20.0178 \%) & 7.14967 (69.5865 \%) \\
232     Passes HLT & 39.4171 (97.1886 \%) & 23.1973 (99.3651 \%) & 88.7791 (95.4806 \%) & 6.6245 (92.6546 \%) \\
233     Z mass window & 35.5638 (90.2244 \%) & 18.8988 (81.4696 \%) & 50.2509 (56.6022 \%) & 2.84083 (42.8837 \%) \\ \hline
234     Overall efficiency & 6.51352 \% & 0.0259704 \% & 0.00396331 \% & 0.0161814 \% \\
235 vuko 1.3 \hline
236     \end{tabular}
237    
238 vuko 1.9
239 vuko 1.3 \begin{tabular}{lcccc} \hline
240 vuko 1.9 \multicolumn{5}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
241     Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline
242     All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\
243     Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\
244     Found $W \to \mu$ & 57.7986 (24.7267 \%) & 810.721 (2.54229 \%) & 2520.69 (0.436668 \%) & 35.3061 (1.27054 \%) \\
245     W Lepton Pt cut & 44.2533 (76.5646 \%) & 8.89355 (1.09699 \%) & 1.84115 (0.0730414 \%) & 1.683 (4.76688 \%) \\
246     Passes HLT & 43.9977 (99.4225 \%) & 8.89355 (100 \%) & 1.84115 (100 \%) & 1.683 (100 \%) \\
247     Z mass window & 40.0462 (91.0188 \%) & 7.78185 (87.5 \%) & 1.84115 (100 \%) & 1.15783 (68.7957 \%) \\ \hline
248     Overall efficiency & 7.33446 \% & 0.0106937 \% & 0.000145212 \% & 0.00659501 \% \\
249 vuko 1.3 \hline
250     \end{tabular}
251 vuko 1.9
252    
253 vuko 1.3 \caption{Expected number of signal and background events passing the different
254 vuko 1.9 selections steps in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
255 vuko 1.3 of 1 \invfb.}
256     \label{tab:sel-effA}
257     \end{center}
258     \end{table}
259    
260    
261 vuko 1.1
262 beaucero 1.8 %\subsection{Signal extraction}
263     %\input D0Matrix
264 vuko 1.5 \input zjetbackground
265 vuko 1.1
266    
267 beaucero 1.8 \section{Systematic uncertainties}
268 beaucero 1.4 \input Sys
269 vuko 1.1
270    
271 vuko 1.3 \begin{figure}[bt]
272     \begin{center}
273 vuko 1.7 \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
274     \caption{Missing transverse mass for the four signal categories.
275     The distributions show the number of expected events
276     for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
277     are shown. All selection cuts are applied.}
278     \label{fig:met}
279     \end{center}
280     \end{figure}
281    
282     \begin{figure}[bt]
283     \begin{center}
284 vuko 1.3 \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
285     \caption{W transverse mass for the four signal categories.
286     The distributions show the number of expected events
287 vuko 1.7 for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.
288     All selection cuts are applied.}
289 vuko 1.3 \label{fig:mtw}
290     \end{center}
291     \end{figure}
292 vuko 1.7
293    
294    
295    
296     \begin{table}[tbp]
297     \begin{center}
298     \begin{tabular}{lccccc}
299     \hline \hline
300     & \multicolumn{5}{c}{$Z \to ee $} \\
301     & $W \to e$
302     & $W \to \mu$
303     & $W \to \tau \to e$
304     & $W \to \tau \to \mu$
305     & $W \to \tau \to hadrons$
306     \\ \hline
307     $3e$ & 17.4 \% & 0.0319 \% & 6.42 \% & 0 \% & 0.162 \% \\
308     $2e1\mu$ & 0 \% & 18.6 \% & 0 \% & 5.53 \% & 0.0485 \% \\
309     $2\mu1e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
310     $3\mu$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
311     \hline \hline
312     & \multicolumn{5}{c}{$Z \to \mu\mu $} \\
313     & $W \to e$
314     & $W \to \mu$
315     & $W \to \tau \to e$
316     & $W \to \tau \to \mu$
317     & $W \to \tau \to hadrons$
318     \\ \hline
319     $3e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
320     $2e1\mu$ & 0.0104 \% & 0 \% & 0 \% & 0 \% & 0 \% \\
321     $2\mu1e$ & 19.6 \% & 0.0208 \% & 5.56 \% & 0 \% & 0.18 \% \\
322     $3\mu$ & 0 \% & 23.4 \% & 0.0573 \% & 6.77 \% & 0.0164 \% \\
323     \hline \hline
324     \end{tabular}
325     \end{center}
326     \caption{Selection efficiency for signal events in the four selection channels for the different
327     generated \W and \Z decay channels.}
328     \label{tab:wz-effimatrix}
329     \end{table}
330    
331    
332     \begin{table}[tbp]
333     \begin{center}
334     \begin{tabular}{llcc} \hline
335     & & \multicolumn{2}{c}{Generated decay:} \\
336     & & \multicolumn{2}{c}{$Z \to ee $} \\
337     Selection channel & & $W \to e$ & $W \to \mu$ \\ \hline
338     \hline \hline
339     \multicolumn{4}{c}{all} \\ \hline
340     $3e$ & all & 1644 & 3 \\
341     $3e$ & matched Z & 0.937+/-0.00598 & 1+/-0\\
342     $3e$ & matched W & 0.915+/-0.00688 & 0+/--1\\
343     $3e$ & matched WZ & 0.914+/-0.00691 & 0+/--1\\
344     \hline \hline
345     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
346     $3e$ & all & 1602 & 0 \\
347     $3e$ & matched Z & 0.938+/-0.00604 & -1+/--1\\
348     $3e$ & matched W & 0.915+/-0.00696 & -1+/--1\\
349     $3e$ & matched WZ & 0.914+/-0.00699 & -1+/--1\\
350     \hline \hline
351     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
352     $3e$ & all & 42 & 3 \\
353     $3e$ & matched Z & 0.929+/-0.0397 & 1+/-0\\
354     $3e$ & matched W & 0.905+/-0.0453 & 0+/--1\\
355     $3e$ & matched WZ & 0.905+/-0.0453 & 0+/--1\\
356     \hline \hline
357     \multicolumn{4}{c}{all} \\ \hline
358     $2e1\mu$ & all & 0 & 1746 \\
359     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000573\\
360     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
361     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000573\\
362     \hline \hline
363     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
364     $2e1\mu$ & all & 0 & 1715 \\
365     $2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000583\\
366     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
367     $2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000583\\
368     \hline \hline
369     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
370     $2e1\mu$ & all & 0 & 31 \\
371     $2e1\mu$ & matched Z & -1+/--1 & 1+/-0\\
372     $2e1\mu$ & matched W & -1+/--1 & 1+/-0\\
373     $2e1\mu$ & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline
374     \end{tabular}
375     \end{center}
376     \caption{Fractions of events with correctly matched leptons
377     to true decay product of \W and \Z decays for final states
378     with generated $\Z\to ee$ decays}
379     \label{tab:wz-matcheffi-Zee}
380     \end{table}
381    
382    
383    
384     \begin{table}[tbp]
385     \begin{center}
386     \begin{tabular}{llcc} \hline
387     & & \multicolumn{2}{c}{Generated decay:} \\
388     & & \multicolumn{2}{c}{$Z \to \mu\mu $} \\
389     Selection channel & & $W \to e$ & $W \to \mu$
390     \\ \hline
391     \hline \hline
392     \multicolumn{4}{c}{all} \\ \hline
393     $2\mu1e$ & all & 1895 & 2 \\
394     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
395     $2\mu1e$ & matched W & 0.985+/-0.00282 & 0+/--1\\
396     $2\mu1e$ & matched WZ & 0.985+/-0.00282 & 0+/--1\\
397     \hline \hline
398     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
399     $2\mu1e$ & all & 1847 & 0 \\
400     $2\mu1e$ & matched Z & 1+/-0 & -1+/--1\\
401     $2\mu1e$ & matched W & 0.986+/-0.00274 & -1+/--1\\
402     $2\mu1e$ & matched WZ & 0.986+/-0.00274 & -1+/--1\\
403     \hline \hline
404     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
405     $2\mu1e$ & all & 48 & 2 \\
406     $2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\
407     $2\mu1e$ & matched W & 0.938+/-0.0349 & 0+/--1\\
408     $2\mu1e$ & matched WZ & 0.938+/-0.0349 & 0+/--1\\
409     \hline \hline
410     \multicolumn{4}{c}{all} \\ \hline
411     $3\mu$ & all & 0 & 2251 \\
412     $3\mu$ & matched Z & -1+/--1 & 0.943+/-0.00488\\
413     $3\mu$ & matched W & -1+/--1 & 0.933+/-0.00526\\
414     $3\mu$ & matched WZ & -1+/--1 & 0.933+/-0.00526\\
415     \hline \hline
416     \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
417     $3\mu$ & all & 0 & 2207 \\
418     $3\mu$ & matched Z & -1+/--1 & 0.944+/-0.0049\\
419     $3\mu$ & matched W & -1+/--1 & 0.934+/-0.00529\\
420     $3\mu$ & matched WZ & -1+/--1 & 0.934+/-0.00529\\
421     \hline \hline
422     \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
423     $3\mu$ & all & 0 & 44 \\
424     $3\mu$ & matched Z & -1+/--1 & 0.909+/-0.0433\\
425     $3\mu$ & matched W & -1+/--1 & 0.909+/-0.0433\\
426     $3\mu$ & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline
427     \end{tabular}
428     \end{center}
429     \caption{Fractions of MC \WZ events with correctly matched leptons
430     to true decay product of \W and \Z decays for final states
431     with generated $\Z\to \mu\mu$ decays}
432     \label{tab:wz-matcheffi-Zmumu}
433     \end{table}
434