ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/selection.tex (file contents):
Revision 1.1 by vuko, Wed Jun 11 15:18:44 2008 UTC vs.
Revision 1.11 by vuko, Sun Jun 22 23:14:53 2008 UTC

# Line 1 | Line 1
1   \section{Event reconstruction}
2   \label{sec:eventReconstruction}
3  
4 < \subsection{Trigger selection and efficiencies}
4 > The four possible final states of \WZ
5 > production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 > and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7 > denoted as follows:
8 > \begin{itemize}
9 > \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10 > \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11 > \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12 > \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13 > \end{itemize}
14  
15  
16 < \subsection{Lepton identification}
16 > \subsection{Trigger selection and efficiencies}
17  
18 + Events stemming from the three-lepton final states of $\WZ$ production
19 + are collected by the electron and/or muon triggers. For each channel,
20 + a minimun number of HLT requirements is chosen while keeping
21 + the HLT efficiency for selected events close to 100\%. The same
22 + HLT requirements are used for channels with the same Z decay mode:
23 + \begin{itemize}
24 + \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25 + \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26 + \end{itemize}
27 + The HLT efficiencies for all modes for events passing the full
28 + selection described in this section are given in table~\ref{tab:hlteff}.
29 +
30 +
31 + \begin{table}[tbph]
32 + \begin{center}
33 +
34 + \begin{tabular}{llc} \hline \hline
35 + Channel    &   HLT selection                                   & HLT efficiency \\ \hline
36 + $3e$       &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.996         \\
37 + $2e1\mu$   &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.969         \\
38 + $2\mu 1e$  &   HLTSingleMuonIso                                &  0.966         \\
39 + $3\mu$     &   HLTSingleMuonIso                                &  0.994         \\ \hline \hline
40 + \end{tabular}
41 +
42 + \end{center}
43 + \caption{HLT Efficiencies, in percent, for all
44 +  the events in the generated phase space that have been retained  by
45 +  the complete event selection.}
46 + \label{tab:hlteff}
47 + \end{table}
48 +
49 +
50 + \begin{figure}[tbp]
51 +  \begin{center}
52 +  \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
53 +  \caption{Muon isolation variables for the muon associated
54 +    to the \W-boson decay in $2e1\mu$ events: the left plot
55 +    shows the sum of calorimetric energy in a $\Delta R=0.3$ cone
56 +    around the muon candidate; the right plot shows the sum of
57 +    transverse momenta of tracks within a $\Delta R = 0.25$ cone around
58 +    the muon candidate. The normalization of signal and background
59 +    distributions is arbitrary.
60 + }
61 +  \label{fig:mu_isol}
62 +  \end{center}
63 + \end{figure}
64 +
65 + \begin{figure}[tb]
66 +  \begin{center}
67 +  \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
68 +  \caption{
69 +    Muon impact parameter significance distribution
70 +    in $2e1\mu$ events. The normalization of signal and background
71 +    distributions is arbitrary.
72 +  }
73 +  \label{fig:mu_SIP}
74 +  \end{center}
75 + \end{figure}
76  
77  
78 < \subsection{\WZ candidate selection}
78 > \subsection{Lepton identification}
79 > \label{sec:leptonId}
80  
81 + The requirements used for electron identification in this analysis are described
82 + in~\cite{noteElectronID}.
83  
84 < \subsection{Signal extraction}
84 > Muon candidates are selected from global muons, which are reconstructed
85 > combining measurements in the muon chambers and the central tracker.
86 > An additional isolation criterion requires that the energy
87 > measured in the calorimeters within a $\Delta R = 0.3$ cone around the
88 > muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
89 > within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev.
90 > These cuts reduce the background from muons originated in
91 > \b-quark decays of the $\Zbbbar$ background, which are close to tracks
92 > and clusters from the other \b-quark decay products.
93 >
94 > %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
95 > %performance of the isolation cut. The distribution of the isolation
96 > %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
97 > %interesting, since muons only stem from  \b-quark decays.
98 >
99 > The significance of the muon impact parameter in the plane
100 > transverse to the beam, $S_{IP}$, discriminates against leptons from
101 > heavy-quark decays in all Standard Model background processes. This
102 > variable is defined as the ratio between the measured impact parameter
103 > and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
104 > satisfy $S_{IP}<3$. This requirement is applied only for muons
105 > and not for electrons. For electrons, a significant fraction of the
106 > background comes from fake electrons and not from heavy quark decays,
107 > and a cut on the impact parameter significance shows no improvement
108 > in significance for the $\W\to e$ channels, as can be seen in
109 > Figure~\ref{fig:wl_IP_SvsCut}.
110 >
111 > \begin{figure}[p]
112 >  \begin{center}
113 >  \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
114 >  \caption{Efficiency for signal and background as a function
115 >    of the cut value on the \W-boson lepton impact parameter
116 >    significance. All other cuts but the cut on this variable
117 >    are applied.
118 > %    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
119 > %    are considered.
120 >  }
121 >  \label{fig:wl_IP_eff}
122 >  \end{center}
123 > %\end{figure}
124 >
125 > %\begin{figure}[bt]
126 >  \begin{center}
127 >  \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
128 >  \caption{Signal significance as a function of the cut value on
129 >    the \W-boson lepton impact parameter significance. All other cuts but
130 >    the cut on this variable are applied.
131 > %    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev are considered.
132 >  }
133 >  \label{fig:wl_IP_SvsCut}
134 >  \end{center}
135 > \end{figure}
136 >
137 >
138 > \begin{table}[tbp]
139 > \begin{tabular}{|l|c|c|c|c|} \hline
140 >              &  $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
141 > \multicolumn{5}{|c|}{Lepton selection} \\ \hline
142 > Electrons     &   \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\
143 >              &   \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} &  \\ \hline
144 > Muons         &  &  \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$}  \\
145 >              &  &  \multicolumn{3}{|c|}{ Calorimetric Isolation:$  {\tt IsoCalo}(\Delta R = 0.3)  < 5 \gev$}  \\
146 >              &  &  \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ }  \\ \hline
147 > HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
148 >                & \multicolumn{2}{|c|}{  HLTSingleMuonIso} \\ \hline
149 > \multicolumn{5}{|c|}{Z reconstruction} \\ \hline
150 > Lepton cuts   &  \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\
151 > Mass window   &  \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
152 > Second Z veto &  \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
153 > \multicolumn{5}{|c|}{W lepton selection} \\ \hline
154 >
155 > Other cuts    &     &        & $\Delta R(\mu_Z,e_W)>0.1$ &  \\ \hline
156 > Signal region  &    \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
157 >
158 > \end{tabular}
159 > \caption{Summary of all cuts used in the WZ selection}
160 > \label{tab:allcuts}
161 > \end{table}
162 >
163 >
164 > \begin{figure}[p]
165 >  \begin{center}
166 >  \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
167 >  \caption{Efficiency for signal and background as a function
168 >    of the cut value on the \W-boson lepton transverse momentum.
169 >    All other cuts but the cut on this variable are applied.
170 >    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
171 >    are considered.}
172 >  \label{fig:wlpt_cuteff}
173 >  \end{center}
174 > %\end{figure}
175 >
176 > %\begin{figure}[bt]
177 >  \begin{center}
178 >  \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
179 >  \caption{Signal significance as a function of the cut value on
180 >    the \W-boson lepton transverse momentum. All other cuts but
181 >    the cut on this variable are applied. Only events with
182 >    81.1 GeV $< M_Z < $ 101.1 \gev are considered.}
183 >  \label{fig:wlpt_cutS}
184 >  \end{center}
185 > \end{figure}
186  
187  
188 < \subsection{Systematic uncertainties}
188 > \subsection{\WZ candidate selection}
189  
190 + Events are accepted if they contain at least three charged leptons,
191 + either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
192 + electrons,$| \eta | < 2.4$ for muons.
193 + as discussed in~\ref{sec:leptonId}.
194 +
195 + The \WZ candidate selection proceeds from building all possible
196 + \Z-boson candidates from same-flavour opposite-charge lepton pairs.
197 + For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
198 + defined in~\cite{noteElectronID}.
199 +
200 + Events are retained if the mass of this \Z-boson candidate is
201 + within 20 GeV of the Z-boson mass,$m_Z$. The event is
202 + rejected if a second Z candidate is found. This second Z candidate is done
203 + with all possible same-flavour opposite-charge combinations which are left
204 + after removing the two leptons already used for the first Z candidate. This
205 + veto on the presence of a second Z helps to suppress $ZZ$ events.
206 + %The invariant
207 + %mass distribution for accepted \Z candidates is shown in
208 + %Figure~\ref{fig:zcandidates}.
209 +
210 + % and the \Z mass resolution is shown in
211 + %Figure~\ref{fig:dzmass}.
212 +
213 + After the \Z-boson candidate is identified, the lepton associated
214 + to the  \W-boson decay is chosen from the remaining electrons and muons
215 + in the event that have not been used for reconstructing the \Z-boson.
216 + Electrons are required to pass the tight criteria described in
217 + \cite{noteElectronID}.  If the event contains more than three leptons,
218 + the highest $p_t$ is chosen as the one from the \W-boson decay, and
219 + the additional leptons are not considered further.
220 + The transverse momentum of this lepton is required to be larger
221 + than 20 GeV. This last requirement is effective in rejecting
222 + the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff},
223 + and the cut value is chosen in
224 + the range that maximises the significance as shown in
225 + Figure~\ref{fig:wlpt_cutS}.
226 +
227 + An additional requirement on the isolation between electron and muons is applied
228 + for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
229 + to the \W-decay and any of the two muons associated to the \Z-decay be greater than
230 + 0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
231 + decays, where one of the two muons radiates a photon which is reconstructed
232 + as electrons, possibly after conversion, which shows up as a peak at  around 60 GeV
233 + in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
234 +
235 + The summary of the selection is given in Table~\ref{tab:allcuts}.
236 +
237 + The expected number of events passing the various steps of the selection
238 + is listed in Tables~\ref{tab:sel-effA}.
239 + Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
240 + the different generated \W and \Z decays. It can be seen there that \WZ\
241 + events with both the \W and the \Z boson decaying into electrons or muons
242 + almost always get reconstructed with the correct flavour. It is to be
243 + noted in addition that each of our four selection channels gets a small
244 + contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
245 + selection efficiency for these events is however smaller which is mostly due
246 + to the \pt cut on the third lepton, since the \pt spectrum of electrons or
247 + muons from $W \to \tau \to e/\mu$ decays is softer.
248 +
249 + Tables~ref\label{tab:wz-matcheffi-Zee} and \label{tab:wz-matcheffi-Zmumu} show
250 + the fraction of reconstructed \WZ events with with correclty matched leptons
251 + It is in particular worth mentioning that the lepton associated to the \W-decay
252 + is correclty matched to the true lepton from the \W-decay in more than 90\% of
253 + the cases even for events with several lepton candidates available to be associated
254 + to the \W-decay. The choice to take the candidate with the leading \pt is therefore
255 + justified.
256 +
257 + \begin{table}[p]
258 +  \begin{center}
259 +
260 +
261 +
262 +
263 + \begin{tabular}{lcccc} \hline
264 + \multicolumn{5}{c}{ {\bf $3e$ Channel}} \\ \hline  \hline
265 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
266 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
267 + Found $Z \to ee$         & 204.969 (37.5401 \%)  & 27800.5 (38.203 \%)   & 502344 (39.62 \%)     & 2920.59 (16.6357 \%) \\
268 + Found $W \to e$          & 41.9925 (20.4872 \%)  & 171.053 (0.615286 \%)         & 309.563 (0.0616238 \%)        & 13.8293 (0.473511 \%) \\
269 + W Lepton Pt cut          & 34.8561 (83.0056 \%)  & 23.7161 (13.8648 \%)  & 86.7924 (28.037 \%)   & 8.25515 (59.6931 \%) \\
270 + Passes HLT               & 34.7185 (99.6052 \%)  & 23.5679 (99.375 \%)   & 86.7924 (100 \%)      & 8.25515 (100 \%) \\
271 + Z mass window    & 31.5533 (90.8834 \%)  & 17.4906 (74.2138 \%)  & 51.8927 (59.7894 \%)  & 3.2585 (39.4724 \%) \\ \hline
272 + Overall efficiency  & 5.77899 \% & 0.0240354 \% & 0.00409279 \% & 0.0185605 \% \\
273 + \hline
274 + \end{tabular}
275 + \begin{tabular}{lcccc} \hline
276 + \multicolumn{5}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline  \hline
277 + Step   & WZ  & bbll  & Z+jets  & \ttjets\\ \hline
278 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
279 + Found $Z \to ee$         & 204.969 (37.5401 \%)  & 27800.5 (38.203 \%)   & 502344 (39.62 \%)     & 2920.59 (16.6357 \%) \\
280 + Found $W \to \mu$        & 47.9099 (23.3743 \%)  & 747.725 (2.68961 \%)  & 2194.09 (0.436771 \%)         & 56.7645 (1.9436 \%) \\
281 + W Lepton Pt cut          & 37.0973 (77.4313 \%)  & 9.63467 (1.28853 \%)  & 9.57604 (0.436446 \%)         & 17.5382 (30.8965 \%) \\
282 + Passes HLT               & 36.1929 (97.5623 \%)  & 9.26411 (96.1538 \%)  & 8.32189 (86.9033 \%)  & 15.2488 (86.9457 \%) \\
283 + Z mass window    & 32.5166 (89.8425 \%)  & 8.15242 (88 \%)       & 7.31467 (87.8968 \%)  & 4.91533 (32.2343 \%) \\ \hline
284 + Overall efficiency  & 5.95542 \% & 0.0112029 \% & 0.000576911 \% & 0.0279978 \% \\
285 + \hline
286 + \end{tabular}
287 +
288 + \begin{tabular}{lcccc} \hline
289 + \multicolumn{5}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline  \hline
290 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
291 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
292 + Found $Z \to \mu\mu$     & 233.75 (42.8114 \%)   & 31889.4 (43.8219 \%)  & 577257 (45.5284 \%)   & 2778.81 (15.8282 \%) \\
293 + Found $W \to e$          & 48.7553 (20.8579 \%)  & 213.519 (0.669562 \%)         & 701.695 (0.121557 \%)         & 15.1085 (0.543704 \%) \\
294 + W Lepton Pt cut                  & 40.6556 (83.3871 \%)  & 50.6191 (23.707 \%)   & 464.493 (66.196 \%)   & 10.2745 (68.0047 \%) \\
295 + $\Delta R(e,\mu)$ cut    & 40.5573 (99.7582 \%)  & 23.3456 (46.1201 \%)  & 92.9813 (20.0178 \%)  & 7.14967 (69.5865 \%) \\
296 + Passes HLT                       & 39.4171 (97.1886 \%)  & 23.1973 (99.3651 \%)  & 88.7791 (95.4806 \%)  & 6.6245 (92.6546 \%) \\
297 + Z mass window    & 35.5638 (90.2244 \%)  & 18.8988 (81.4696 \%)  & 50.2509 (56.6022 \%)  & 2.84083 (42.8837 \%) \\ \hline
298 + Overall efficiency  & 6.51352 \% & 0.0259704 \% & 0.00396331 \% & 0.0161814 \% \\
299 + \hline
300 + \end{tabular}
301 +
302 +
303 + \begin{tabular}{lcccc} \hline
304 + \multicolumn{5}{c}{ {\bf $3\mu$ Channel}} \\ \hline  \hline
305 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
306 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
307 + Found $Z \to \mu\mu$     & 233.75 (42.8114 \%)   & 31889.4 (43.8219 \%)  & 577257 (45.5284 \%)   & 2778.81 (15.8282 \%) \\
308 + Found $W \to \mu$        & 57.7986 (24.7267 \%)  & 810.721 (2.54229 \%)  & 2520.69 (0.436668 \%)         & 35.3061 (1.27054 \%) \\
309 + W Lepton Pt cut                  & 44.2533 (76.5646 \%)  & 8.89355 (1.09699 \%)  & 1.84115 (0.0730414 \%)        & 1.683 (4.76688 \%) \\
310 + Passes HLT                       & 43.9977 (99.4225 \%)  & 8.89355 (100 \%)      & 1.84115 (100 \%)      & 1.683 (100 \%) \\
311 + Z mass window    & 40.0462 (91.0188 \%)  & 7.78185 (87.5 \%)     & 1.84115 (100 \%)      & 1.15783 (68.7957 \%) \\ \hline
312 + Overall efficiency  & 7.33446 \% & 0.0106937 \% & 0.000145212 \% & 0.00659501 \% \\
313 + \hline
314 + \end{tabular}
315 +
316 +
317 + \caption{Expected number of signal and background events passing the different
318 +  selections steps in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
319 +  of 1 \invfb.}
320 + \label{tab:sel-effA}
321 + \end{center}
322 + \end{table}
323 +
324 + \begin{table}[p]
325 + \begin{center}
326 + \begin{tabular}{lccccc}
327 + \hline \hline
328 + & \multicolumn{5}{c}{$Z \to ee $} \\
329 +   &  $W \to e$
330 +   &  $W \to \mu$
331 +   &  $W \to \tau \to e$
332 +   &  $W \to \tau \to \mu$
333 +   &  $W \to \tau \to hadrons$
334 + \\ \hline
335 + $3e$       &  17.4 \%  &  0.0319 \%  &  6.42 \%  &  0 \%  &  0.162 \% \\
336 + $2e1\mu$   &  0 \%  &  18.6 \%  &  0 \%  &  5.53 \%  &  0.0485 \% \\
337 + $2\mu1e$   &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
338 + $3\mu$     &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
339 + \hline \hline
340 + & \multicolumn{5}{c}{$Z \to \mu\mu $} \\
341 +   &  $W \to e$
342 +   &  $W \to \mu$
343 +   &  $W \to \tau \to e$
344 +   &  $W \to \tau \to \mu$
345 +   &  $W \to \tau \to hadrons$
346 + \\ \hline
347 + $3e$        &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
348 + $2e1\mu$   &  0.0104 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
349 + $2\mu1e$   &  19.6 \%  &  0.0208 \%  &  5.56 \%  &  0 \%  &  0.18 \% \\
350 + $3\mu$     &  0 \%  &  23.4 \%  &  0.0573 \%  &  6.77 \%  &  0.0164 \% \\
351 + \hline \hline
352 + \end{tabular}
353 + \end{center}
354 + \caption{Selection efficiency for signal events in the four selection channels for the different
355 +  generated \W and \Z decay channels.}
356 + \label{tab:wz-effimatrix}
357 +
358 + %\end{table}
359 + %\begin{table}[tbp]
360 + \begin{center}
361 + \begin{tabular}{llcc} \hline
362 +  & & \multicolumn{2}{c}{Generated decay:} \\
363 +  & & \multicolumn{2}{c}{$Z \to ee $} \\
364 + Selection channel  &    &  $W \to e$   &  $W \to \mu$ \\ \hline
365 + \hline \hline
366 + \multicolumn{4}{c}{all} \\ \hline
367 + $3e$        & all & 1644         & 3    \\
368 + $3e$        & matched Z & 0.937+/-0.00598 & 1+/-0\\
369 + $3e$        & matched W & 0.915+/-0.00688 & 0+/--1\\
370 + $3e$        & matched WZ & 0.914+/-0.00691 & 0+/--1\\
371 + \hline \hline
372 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
373 + $3e$        & all & 1602         & 0    \\
374 + $3e$        & matched Z & 0.938+/-0.00604 & -1+/--1\\
375 + $3e$        & matched W & 0.915+/-0.00696 & -1+/--1\\
376 + $3e$        & matched WZ & 0.914+/-0.00699 & -1+/--1\\
377 + \hline \hline
378 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
379 + $3e$        & all & 42   & 3    \\
380 + $3e$        & matched Z & 0.929+/-0.0397 & 1+/-0\\
381 + $3e$        & matched W & 0.905+/-0.0453 & 0+/--1\\
382 + $3e$        & matched WZ & 0.905+/-0.0453 & 0+/--1\\
383 + \hline \hline
384 + \multicolumn{4}{c}{all} \\ \hline
385 + $2e1\mu$   & all & 0     & 1746 \\
386 + $2e1\mu$   & matched Z & -1+/--1 & 0.999+/-0.000573\\
387 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
388 + $2e1\mu$   & matched WZ & -1+/--1 & 0.999+/-0.000573\\
389 + \hline \hline
390 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
391 + $2e1\mu$   & all & 0     & 1715 \\
392 + $2e1\mu$   & matched Z & -1+/--1 & 0.999+/-0.000583\\
393 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
394 + $2e1\mu$   & matched WZ & -1+/--1 & 0.999+/-0.000583\\
395 + \hline \hline
396 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
397 + $2e1\mu$   & all & 0     & 31   \\
398 + $2e1\mu$   & matched Z & -1+/--1 & 1+/-0\\
399 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
400 + $2e1\mu$   & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline
401 + \end{tabular}
402 + \end{center}
403 + \caption{Fractions of events with correctly matched leptons
404 +  to true decay product of \W and \Z decays for final states
405 +  with generated $\Z\to ee$ decays}
406 + \label{tab:wz-matcheffi-Zee}
407 + \end{table}
408 +
409 +
410 +
411 + \begin{table}[tbp]
412 + \begin{center}
413 + \begin{tabular}{llcc} \hline
414 +  & & \multicolumn{2}{c}{Generated decay:} \\
415 + & & \multicolumn{2}{c}{$Z \to \mu\mu $} \\
416 + Selection channel  &    &  $W \to e$   &  $W \to \mu$
417 + \\ \hline
418 + \hline \hline
419 + \multicolumn{4}{c}{all} \\ \hline
420 + $2\mu1e$   & all & 1895  & 2    \\
421 + $2\mu1e$   & matched Z & 1+/-0 & 1+/-0\\
422 + $2\mu1e$   & matched W & 0.985+/-0.00282 & 0+/--1\\
423 + $2\mu1e$   & matched WZ & 0.985+/-0.00282 & 0+/--1\\
424 + \hline \hline
425 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
426 + $2\mu1e$   & all & 1847  & 0    \\
427 + $2\mu1e$   & matched Z & 1+/-0 & -1+/--1\\
428 + $2\mu1e$   & matched W & 0.986+/-0.00274 & -1+/--1\\
429 + $2\mu1e$   & matched WZ & 0.986+/-0.00274 & -1+/--1\\
430 + \hline \hline
431 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
432 + $2\mu1e$   & all & 48    & 2    \\
433 + $2\mu1e$   & matched Z & 1+/-0 & 1+/-0\\
434 + $2\mu1e$   & matched W & 0.938+/-0.0349 & 0+/--1\\
435 + $2\mu1e$   & matched WZ & 0.938+/-0.0349 & 0+/--1\\
436 + \hline \hline
437 + \multicolumn{4}{c}{all} \\ \hline
438 + $3\mu$     & all & 0     & 2251 \\
439 + $3\mu$     & matched Z & -1+/--1 & 0.943+/-0.00488\\
440 + $3\mu$     & matched W & -1+/--1 & 0.933+/-0.00526\\
441 + $3\mu$     & matched WZ & -1+/--1 & 0.933+/-0.00526\\
442 + \hline \hline
443 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
444 + $3\mu$     & all & 0     & 2207 \\
445 + $3\mu$     & matched Z & -1+/--1 & 0.944+/-0.0049\\
446 + $3\mu$     & matched W & -1+/--1 & 0.934+/-0.00529\\
447 + $3\mu$     & matched WZ & -1+/--1 & 0.934+/-0.00529\\
448 + \hline \hline
449 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
450 + $3\mu$     & all & 0     & 44   \\
451 + $3\mu$     & matched Z & -1+/--1 & 0.909+/-0.0433\\
452 + $3\mu$     & matched W & -1+/--1 & 0.909+/-0.0433\\
453 + $3\mu$     & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline
454 + \end{tabular}
455 + \end{center}
456 + \caption{Fractions of MC \WZ events with correctly matched leptons
457 +  to true decay product of \W and \Z decays for final states
458 +  with generated $\Z\to \mu\mu$ decays}
459 + \label{tab:wz-matcheffi-Zmumu}
460 + \end{table}
461 +
462 +
463 + %\subsection{Signal extraction}
464 + %\input D0Matrix
465 + \input zjetbackground
466 +
467 +
468 + \section{Systematic uncertainties}
469 + \input Sys
470 +
471 +
472 + \begin{figure}[bt]
473 +  \begin{center}
474 +  \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
475 +  \caption{Missing transverse mass for the four signal categories.
476 +    The distributions  show the number of expected events
477 +    for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
478 +    are shown. All selection cuts are applied.}
479 +  \label{fig:met}
480 +  \end{center}
481 + \end{figure}
482 +
483 + \begin{figure}[bt]
484 +  \begin{center}
485 +  \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
486 +  \caption{W transverse mass for the four signal categories.
487 +    The distributions  show the number of expected events
488 +    for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.
489 +    All selection cuts are applied.}
490 +  \label{fig:mtw}
491 +  \end{center}
492 + \end{figure}
493  
494  
495  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines