1 |
|
\section{Event reconstruction} |
2 |
|
\label{sec:eventReconstruction} |
3 |
|
|
4 |
< |
\subsection{Trigger selection and efficiencies} |
5 |
< |
|
6 |
< |
|
7 |
< |
\subsection{Lepton identification} |
8 |
< |
|
4 |
> |
The four possible final states of \WZ |
5 |
> |
production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$ |
6 |
> |
and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes, |
7 |
> |
denoted as follows: |
8 |
> |
\begin{itemize} |
9 |
> |
\item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$. |
10 |
> |
\item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$. |
11 |
> |
\item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$. |
12 |
> |
\item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$. |
13 |
> |
\end{itemize} |
14 |
|
|
15 |
|
|
16 |
< |
\subsection{\WZ candidate selection} |
12 |
< |
|
16 |
> |
\subsection{Trigger selection and efficiencies} |
17 |
|
|
18 |
< |
\subsection{Signal extraction} |
18 |
> |
Events stemming from the three-lepton final states of $\WZ$ production |
19 |
> |
are collected by the electron and/or muon triggers. For each channel, |
20 |
> |
a minimun number of HLT requirements is chosen while keeping |
21 |
> |
the HLT efficiency for selected events close to 100\%. The same |
22 |
> |
HLT requirements are used for channels with the same Z decay mode: |
23 |
> |
\begin{itemize} |
24 |
> |
\item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed |
25 |
> |
\item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso |
26 |
> |
\end{itemize} |
27 |
> |
The HLT efficiencies for all modes for events passing the full |
28 |
> |
selection described in this section are given in table~\ref{tab:hlteff}. |
29 |
> |
|
30 |
> |
|
31 |
> |
\begin{table}[tbph] |
32 |
> |
\begin{center} |
33 |
> |
|
34 |
> |
\begin{tabular}{llc} \hline \hline |
35 |
> |
Channel & HLT selection & HLT efficiency \\ \hline |
36 |
> |
$3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\ |
37 |
> |
$2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\ |
38 |
> |
$2\mu 1e$ & HLTSingleMuonIso & 0.966 \\ |
39 |
> |
$3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline |
40 |
> |
\end{tabular} |
41 |
> |
|
42 |
> |
\end{center} |
43 |
> |
\caption{HLT Efficiencies, in percent, for all |
44 |
> |
the events in the generated phase space for events retained by |
45 |
> |
the complete event selection.} |
46 |
> |
\label{tab:hlteff} |
47 |
> |
\end{table} |
48 |
> |
|
49 |
> |
|
50 |
> |
\begin{figure}[tbp] |
51 |
> |
\begin{center} |
52 |
> |
\scalebox{0.7}{\includegraphics{figs/mu_isol.eps}} |
53 |
> |
\caption{Muon isolation variables for the muon associated |
54 |
> |
to the \W-boson decay in $2e1\mu$ events: the left plot |
55 |
> |
shows the sum of calorimetric energy in a $\Delta R=0.3$ cone |
56 |
> |
around the muon candidate; the right plot shows the sum of |
57 |
> |
transverse momenta of tracks within a $\Delta R = 0.25$ cone around |
58 |
> |
the muon candidate. The normalization of signal and background |
59 |
> |
distributions is arbitrary. |
60 |
> |
} |
61 |
> |
\label{fig:mu_isol} |
62 |
> |
\end{center} |
63 |
> |
\end{figure} |
64 |
> |
|
65 |
> |
\begin{figure}[tb] |
66 |
> |
\begin{center} |
67 |
> |
\scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}} |
68 |
> |
\caption{ |
69 |
> |
Muon impact parameter significance distribution |
70 |
> |
in $2e1\mu$ events. The normalization of signal and background |
71 |
> |
distributions is arbitrary. |
72 |
> |
} |
73 |
> |
\label{fig:mu_SIP} |
74 |
> |
\end{center} |
75 |
> |
\end{figure} |
76 |
|
|
77 |
|
|
78 |
< |
\subsection{Systematic uncertainties} |
78 |
> |
\subsection{Lepton identification} |
79 |
> |
\label{sec:leptonId} |
80 |
|
|
81 |
+ |
The requirements used for electron identification in this analysis are described |
82 |
+ |
in~\cite{noteElectronID}. |
83 |
|
|
84 |
+ |
Muon candidates are selected from global muons, which are reconstructed |
85 |
+ |
combining measurements in the muon chambers and the central tracker. |
86 |
+ |
An additional isolation criterion requires that the energy |
87 |
+ |
measured in the calorimeters within a $\Delta R = 0.3$ cone around the |
88 |
+ |
muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks |
89 |
+ |
within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev. |
90 |
+ |
These cuts reduce the background from muons originated in |
91 |
+ |
\b-quark decays of the $\Zbbbar$ background, which are close to tracks |
92 |
+ |
and clusters from the other \b-quark decay products. |
93 |
+ |
|
94 |
+ |
%Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the |
95 |
+ |
%performance of the isolation cut. The distribution of the isolation |
96 |
+ |
%variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly |
97 |
+ |
%interesting, since muons only stem from \b-quark decays. |
98 |
+ |
|
99 |
+ |
The significance of the muon impact parameter in the plane |
100 |
+ |
transverse to the beam, $S_{IP}$, discriminates against leptons from |
101 |
+ |
heavy-quark decays in all Standard Model background processes. This |
102 |
+ |
variable is defined as the ratio between the measured impact parameter |
103 |
+ |
and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to |
104 |
+ |
satisfy $S_{IP}<3$. This requirement is applied only for muons |
105 |
+ |
and not for electrons. For electrons, a significant fraction of the |
106 |
+ |
background comes from fake electrons and not from heavy quark decays, |
107 |
+ |
and a cut on the impact parameter significance shows no improvement |
108 |
+ |
in significance there, as can be seen in Figure~\ref{fig:wl_IP_SvsCut}. |
109 |
+ |
|
110 |
+ |
\begin{figure}[p] |
111 |
+ |
\begin{center} |
112 |
+ |
\scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}} |
113 |
+ |
\caption{Efficiency for signal and background as a function |
114 |
+ |
of the cut value on the \W-boson lepton impact parameter |
115 |
+ |
significance. All other cuts but the cut on this variable |
116 |
+ |
are applied. |
117 |
+ |
% Only events with 81.1 GeV $< M_Z < $ 101.1 \gev |
118 |
+ |
% are considered. |
119 |
+ |
} |
120 |
+ |
\label{fig:wl_IP_eff} |
121 |
+ |
\end{center} |
122 |
+ |
%\end{figure} |
123 |
+ |
|
124 |
+ |
%\begin{figure}[bt] |
125 |
+ |
\begin{center} |
126 |
+ |
\scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}} |
127 |
+ |
\caption{Signal significance as a function of the cut value on |
128 |
+ |
the \W-boson lepton impact parameter significance. All other cuts but |
129 |
+ |
the cut on this variable are applied. |
130 |
+ |
% Only events with 81.1 GeV $< M_Z < $ 101.1 \gev are considered. |
131 |
+ |
} |
132 |
+ |
\label{fig:wl_IP_SvsCut} |
133 |
+ |
\end{center} |
134 |
+ |
\end{figure} |
135 |
+ |
|
136 |
+ |
|
137 |
+ |
\begin{table}[tbp] |
138 |
+ |
\begin{tabular}{|l|c|c|c|c|} \hline |
139 |
+ |
& $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline |
140 |
+ |
\multicolumn{5}{|c|}{Lepton selection} \\ \hline |
141 |
+ |
Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\ |
142 |
+ |
& \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} & \\ \hline |
143 |
+ |
Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\ |
144 |
+ |
& & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\ |
145 |
+ |
& & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline |
146 |
+ |
HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed} |
147 |
+ |
& \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline |
148 |
+ |
\multicolumn{5}{|c|}{Z reconstruction} \\ \hline |
149 |
+ |
Lepton cuts & \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\ |
150 |
+ |
Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\ |
151 |
+ |
Second Z veto & \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline |
152 |
+ |
\multicolumn{5}{|c|}{W lepton selection} \\ \hline |
153 |
+ |
|
154 |
+ |
Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline |
155 |
+ |
Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline |
156 |
+ |
|
157 |
+ |
\end{tabular} |
158 |
+ |
\caption{Summary of all cuts used in the WZ selection} |
159 |
+ |
\label{tab:allcuts} |
160 |
+ |
\end{table} |
161 |
+ |
|
162 |
+ |
|
163 |
+ |
\begin{figure}[p] |
164 |
+ |
\begin{center} |
165 |
+ |
\scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}} |
166 |
+ |
\caption{Efficiency for signal and background as a function |
167 |
+ |
of the cut value on the \W-boson lepton transverse momentum. |
168 |
+ |
All other cuts but the cut on this variable are applied. |
169 |
+ |
Only events with 81.1 GeV $< M_Z < $ 101.1 \gev |
170 |
+ |
are considered.} |
171 |
+ |
\label{fig:wlpt_cuteff} |
172 |
+ |
\end{center} |
173 |
+ |
%\end{figure} |
174 |
+ |
|
175 |
+ |
%\begin{figure}[bt] |
176 |
+ |
\begin{center} |
177 |
+ |
\scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}} |
178 |
+ |
\caption{Signal significance as a function of the cut value on |
179 |
+ |
the \W-boson lepton transverse momentum. All other cuts but |
180 |
+ |
the cut on this variable are applied. Only events with |
181 |
+ |
81.1 GeV $< M_Z < $ 101.1 \gev are considered.} |
182 |
+ |
\label{fig:wlpt_cutS} |
183 |
+ |
\end{center} |
184 |
+ |
\end{figure} |
185 |
|
|
186 |
|
|
187 |
+ |
\subsection{\WZ candidate selection} |
188 |
|
|
189 |
+ |
Events are accepted if they contain at least three charged leptons, |
190 |
+ |
either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for |
191 |
+ |
electrons,$| \eta | < 2.4$ for muons. |
192 |
+ |
as discussed in~\ref{sec:leptonId}. |
193 |
+ |
|
194 |
+ |
The \WZ candidate selection proceeds from building all possible |
195 |
+ |
\Z-boson candidates from same-flavour opposite-charge lepton pairs. |
196 |
+ |
For $\Z \to ee$ decays, electrons have to fullfil the loose requirements |
197 |
+ |
defined in~\cite{noteElectronID}. |
198 |
+ |
|
199 |
+ |
Events are retained if the mass of this \Z-boson candidate is |
200 |
+ |
within 20 GeV of the Z-boson mass,$m_Z$. The event is |
201 |
+ |
rejected if a second Z candidate is found. This second Z candidate is done |
202 |
+ |
with all possible same-flavour opposite-charge combinations which are left |
203 |
+ |
after removing the two leptons already used for the first Z candidate. This |
204 |
+ |
veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant |
205 |
+ |
mass distribution for accepted \Z candidates is shown in |
206 |
+ |
Figure~\ref{fig:zcandidates}. |
207 |
+ |
|
208 |
+ |
% and the \Z mass resolution is shown in |
209 |
+ |
%Figure~\ref{fig:dzmass}. |
210 |
+ |
|
211 |
+ |
After the \Z-boson candidate is identified, the lepton associated |
212 |
+ |
to the \W-boson decay is chosen from the remaining electrons and muons |
213 |
+ |
in the event that have not been used for reconstructing the \Z-boson. |
214 |
+ |
Electrons are required to pass the tight criteria described in |
215 |
+ |
\cite{noteElectronID}. If the event contains more than three leptons, |
216 |
+ |
the highest $p_t$ is chosen as the one from the \W-boson decay, and |
217 |
+ |
the additional leptons are not considered further. |
218 |
+ |
The transverse momentum of this lepton is required to be larger |
219 |
+ |
than 20 GeV. This last requirement is effective in rejecting |
220 |
+ |
the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff}, |
221 |
+ |
and the cut value is chosen in |
222 |
+ |
the range that maximises the significance as shown in |
223 |
+ |
Figure~\ref{fig:wlpt_cutS}. |
224 |
+ |
|
225 |
+ |
An additional requirement on the isolation between electron and muons is applied |
226 |
+ |
for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated |
227 |
+ |
to the \W-decay and any of the two muons associated to the \Z-decay be greater than |
228 |
+ |
0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$ |
229 |
+ |
decays, where one of the two muons radiates a photon which is reconstructed |
230 |
+ |
as electrons, possibly after conversion, which shows up as a peak at around 60 GeV |
231 |
+ |
in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}. |
232 |
+ |
|
233 |
+ |
The summary of the selection can be seen in Table~\ref{tab:allcuts}. |
234 |
+ |
|
235 |
+ |
The expected number of events passing the various steps of the selection |
236 |
+ |
is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}. |
237 |
+ |
Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for |
238 |
+ |
the different generated \W and \Z decays. It can be seen there that \WZ\ |
239 |
+ |
events with both the \W and the \Z boson decaying into electrons or muons |
240 |
+ |
almost always get reconstructed with the correct flavour. It is to be |
241 |
+ |
noted in addition that each of our four selection channels gets a small |
242 |
+ |
contribution from $W \to \tau \to e/\mu$ decays as one would expect. The |
243 |
+ |
selection efficiency for these events is however smaller which is mostly due |
244 |
+ |
to the \pt cut on the third lepton, since the \pt spectrum of electrons or |
245 |
+ |
muons from $W \to \tau \to e/\mu$ decays is softer. |
246 |
+ |
|
247 |
+ |
\begin{table}[p] |
248 |
+ |
\begin{center} |
249 |
+ |
|
250 |
+ |
|
251 |
+ |
|
252 |
+ |
|
253 |
+ |
\begin{tabular}{lcccc} \hline |
254 |
+ |
\multicolumn{5}{c}{ {\bf $3e$ Channel}} \\ \hline \hline |
255 |
+ |
Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline |
256 |
+ |
All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\ |
257 |
+ |
Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\ |
258 |
+ |
Found $W \to e$ & 41.9925 (20.4872 \%) & 171.053 (0.615286 \%) & 309.563 (0.0616238 \%) & 13.8293 (0.473511 \%) \\ |
259 |
+ |
W Lepton Pt cut & 34.8561 (83.0056 \%) & 23.7161 (13.8648 \%) & 86.7924 (28.037 \%) & 8.25515 (59.6931 \%) \\ |
260 |
+ |
Passes HLT & 34.7185 (99.6052 \%) & 23.5679 (99.375 \%) & 86.7924 (100 \%) & 8.25515 (100 \%) \\ |
261 |
+ |
Z mass window & 31.5533 (90.8834 \%) & 17.4906 (74.2138 \%) & 51.8927 (59.7894 \%) & 3.2585 (39.4724 \%) \\ \hline |
262 |
+ |
Overall efficiency & 5.77899 \% & 0.0240354 \% & 0.00409279 \% & 0.0185605 \% \\ |
263 |
+ |
\hline |
264 |
+ |
\end{tabular} |
265 |
+ |
\begin{tabular}{lcccc} \hline |
266 |
+ |
\multicolumn{5}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline |
267 |
+ |
Step & WZ & bbll & Z+jets & \ttjets\\ \hline |
268 |
+ |
All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\ |
269 |
+ |
Found $Z \to ee$ & 204.969 (37.5401 \%) & 27800.5 (38.203 \%) & 502344 (39.62 \%) & 2920.59 (16.6357 \%) \\ |
270 |
+ |
Found $W \to \mu$ & 47.9099 (23.3743 \%) & 747.725 (2.68961 \%) & 2194.09 (0.436771 \%) & 56.7645 (1.9436 \%) \\ |
271 |
+ |
W Lepton Pt cut & 37.0973 (77.4313 \%) & 9.63467 (1.28853 \%) & 9.57604 (0.436446 \%) & 17.5382 (30.8965 \%) \\ |
272 |
+ |
Passes HLT & 36.1929 (97.5623 \%) & 9.26411 (96.1538 \%) & 8.32189 (86.9033 \%) & 15.2488 (86.9457 \%) \\ |
273 |
+ |
Z mass window & 32.5166 (89.8425 \%) & 8.15242 (88 \%) & 7.31467 (87.8968 \%) & 4.91533 (32.2343 \%) \\ \hline |
274 |
+ |
Overall efficiency & 5.95542 \% & 0.0112029 \% & 0.000576911 \% & 0.0279978 \% \\ |
275 |
+ |
\hline |
276 |
+ |
\end{tabular} |
277 |
+ |
|
278 |
+ |
\begin{tabular}{lcccc} \hline |
279 |
+ |
\multicolumn{5}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline |
280 |
+ |
Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline |
281 |
+ |
All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\ |
282 |
+ |
Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\ |
283 |
+ |
Found $W \to e$ & 48.7553 (20.8579 \%) & 213.519 (0.669562 \%) & 701.695 (0.121557 \%) & 15.1085 (0.543704 \%) \\ |
284 |
+ |
W Lepton Pt cut & 40.6556 (83.3871 \%) & 50.6191 (23.707 \%) & 464.493 (66.196 \%) & 10.2745 (68.0047 \%) \\ |
285 |
+ |
$\Delta R(e,\mu)$ cut & 40.5573 (99.7582 \%) & 23.3456 (46.1201 \%) & 92.9813 (20.0178 \%) & 7.14967 (69.5865 \%) \\ |
286 |
+ |
Passes HLT & 39.4171 (97.1886 \%) & 23.1973 (99.3651 \%) & 88.7791 (95.4806 \%) & 6.6245 (92.6546 \%) \\ |
287 |
+ |
Z mass window & 35.5638 (90.2244 \%) & 18.8988 (81.4696 \%) & 50.2509 (56.6022 \%) & 2.84083 (42.8837 \%) \\ \hline |
288 |
+ |
Overall efficiency & 6.51352 \% & 0.0259704 \% & 0.00396331 \% & 0.0161814 \% \\ |
289 |
+ |
\hline |
290 |
+ |
\end{tabular} |
291 |
+ |
|
292 |
+ |
|
293 |
+ |
\begin{tabular}{lcccc} \hline |
294 |
+ |
\multicolumn{5}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline |
295 |
+ |
Step & WZ & bbll & Z+jets & TTbar+jets\\ \hline |
296 |
+ |
All events & 546 & 72770.4 & 1.2679e+06 & 17556.1 \\ |
297 |
+ |
Found $Z \to \mu\mu$ & 233.75 (42.8114 \%) & 31889.4 (43.8219 \%) & 577257 (45.5284 \%) & 2778.81 (15.8282 \%) \\ |
298 |
+ |
Found $W \to \mu$ & 57.7986 (24.7267 \%) & 810.721 (2.54229 \%) & 2520.69 (0.436668 \%) & 35.3061 (1.27054 \%) \\ |
299 |
+ |
W Lepton Pt cut & 44.2533 (76.5646 \%) & 8.89355 (1.09699 \%) & 1.84115 (0.0730414 \%) & 1.683 (4.76688 \%) \\ |
300 |
+ |
Passes HLT & 43.9977 (99.4225 \%) & 8.89355 (100 \%) & 1.84115 (100 \%) & 1.683 (100 \%) \\ |
301 |
+ |
Z mass window & 40.0462 (91.0188 \%) & 7.78185 (87.5 \%) & 1.84115 (100 \%) & 1.15783 (68.7957 \%) \\ \hline |
302 |
+ |
Overall efficiency & 7.33446 \% & 0.0106937 \% & 0.000145212 \% & 0.00659501 \% \\ |
303 |
+ |
\hline |
304 |
+ |
\end{tabular} |
305 |
+ |
|
306 |
+ |
|
307 |
+ |
\caption{Expected number of signal and background events passing the different |
308 |
+ |
selections steps in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity |
309 |
+ |
of 1 \invfb.} |
310 |
+ |
\label{tab:sel-effA} |
311 |
+ |
\end{center} |
312 |
+ |
\end{table} |
313 |
+ |
|
314 |
+ |
|
315 |
+ |
|
316 |
+ |
%\subsection{Signal extraction} |
317 |
+ |
%\input D0Matrix |
318 |
+ |
\input zjetbackground |
319 |
+ |
|
320 |
+ |
|
321 |
+ |
\section{Systematic uncertainties} |
322 |
+ |
\input Sys |
323 |
+ |
|
324 |
+ |
|
325 |
+ |
\begin{figure}[bt] |
326 |
+ |
\begin{center} |
327 |
+ |
\scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}} |
328 |
+ |
\caption{Missing transverse mass for the four signal categories. |
329 |
+ |
The distributions show the number of expected events |
330 |
+ |
for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev |
331 |
+ |
are shown. All selection cuts are applied.} |
332 |
+ |
\label{fig:met} |
333 |
+ |
\end{center} |
334 |
+ |
\end{figure} |
335 |
+ |
|
336 |
+ |
\begin{figure}[bt] |
337 |
+ |
\begin{center} |
338 |
+ |
\scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}} |
339 |
+ |
\caption{W transverse mass for the four signal categories. |
340 |
+ |
The distributions show the number of expected events |
341 |
+ |
for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown. |
342 |
+ |
All selection cuts are applied.} |
343 |
+ |
\label{fig:mtw} |
344 |
+ |
\end{center} |
345 |
+ |
\end{figure} |
346 |
+ |
|
347 |
+ |
|
348 |
+ |
|
349 |
+ |
|
350 |
+ |
\begin{table}[tbp] |
351 |
+ |
\begin{center} |
352 |
+ |
\begin{tabular}{lccccc} |
353 |
+ |
\hline \hline |
354 |
+ |
& \multicolumn{5}{c}{$Z \to ee $} \\ |
355 |
+ |
& $W \to e$ |
356 |
+ |
& $W \to \mu$ |
357 |
+ |
& $W \to \tau \to e$ |
358 |
+ |
& $W \to \tau \to \mu$ |
359 |
+ |
& $W \to \tau \to hadrons$ |
360 |
+ |
\\ \hline |
361 |
+ |
$3e$ & 17.4 \% & 0.0319 \% & 6.42 \% & 0 \% & 0.162 \% \\ |
362 |
+ |
$2e1\mu$ & 0 \% & 18.6 \% & 0 \% & 5.53 \% & 0.0485 \% \\ |
363 |
+ |
$2\mu1e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\ |
364 |
+ |
$3\mu$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\ |
365 |
+ |
\hline \hline |
366 |
+ |
& \multicolumn{5}{c}{$Z \to \mu\mu $} \\ |
367 |
+ |
& $W \to e$ |
368 |
+ |
& $W \to \mu$ |
369 |
+ |
& $W \to \tau \to e$ |
370 |
+ |
& $W \to \tau \to \mu$ |
371 |
+ |
& $W \to \tau \to hadrons$ |
372 |
+ |
\\ \hline |
373 |
+ |
$3e$ & 0 \% & 0 \% & 0 \% & 0 \% & 0 \% \\ |
374 |
+ |
$2e1\mu$ & 0.0104 \% & 0 \% & 0 \% & 0 \% & 0 \% \\ |
375 |
+ |
$2\mu1e$ & 19.6 \% & 0.0208 \% & 5.56 \% & 0 \% & 0.18 \% \\ |
376 |
+ |
$3\mu$ & 0 \% & 23.4 \% & 0.0573 \% & 6.77 \% & 0.0164 \% \\ |
377 |
+ |
\hline \hline |
378 |
+ |
\end{tabular} |
379 |
+ |
\end{center} |
380 |
+ |
\caption{Selection efficiency for signal events in the four selection channels for the different |
381 |
+ |
generated \W and \Z decay channels.} |
382 |
+ |
\label{tab:wz-effimatrix} |
383 |
+ |
\end{table} |
384 |
+ |
|
385 |
+ |
|
386 |
+ |
\begin{table}[tbp] |
387 |
+ |
\begin{center} |
388 |
+ |
\begin{tabular}{llcc} \hline |
389 |
+ |
& & \multicolumn{2}{c}{Generated decay:} \\ |
390 |
+ |
& & \multicolumn{2}{c}{$Z \to ee $} \\ |
391 |
+ |
Selection channel & & $W \to e$ & $W \to \mu$ \\ \hline |
392 |
+ |
\hline \hline |
393 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
394 |
+ |
$3e$ & all & 1644 & 3 \\ |
395 |
+ |
$3e$ & matched Z & 0.937+/-0.00598 & 1+/-0\\ |
396 |
+ |
$3e$ & matched W & 0.915+/-0.00688 & 0+/--1\\ |
397 |
+ |
$3e$ & matched WZ & 0.914+/-0.00691 & 0+/--1\\ |
398 |
+ |
\hline \hline |
399 |
+ |
\multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline |
400 |
+ |
$3e$ & all & 1602 & 0 \\ |
401 |
+ |
$3e$ & matched Z & 0.938+/-0.00604 & -1+/--1\\ |
402 |
+ |
$3e$ & matched W & 0.915+/-0.00696 & -1+/--1\\ |
403 |
+ |
$3e$ & matched WZ & 0.914+/-0.00699 & -1+/--1\\ |
404 |
+ |
\hline \hline |
405 |
+ |
\multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline |
406 |
+ |
$3e$ & all & 42 & 3 \\ |
407 |
+ |
$3e$ & matched Z & 0.929+/-0.0397 & 1+/-0\\ |
408 |
+ |
$3e$ & matched W & 0.905+/-0.0453 & 0+/--1\\ |
409 |
+ |
$3e$ & matched WZ & 0.905+/-0.0453 & 0+/--1\\ |
410 |
+ |
\hline \hline |
411 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
412 |
+ |
$2e1\mu$ & all & 0 & 1746 \\ |
413 |
+ |
$2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000573\\ |
414 |
+ |
$2e1\mu$ & matched W & -1+/--1 & 1+/-0\\ |
415 |
+ |
$2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000573\\ |
416 |
+ |
\hline \hline |
417 |
+ |
\multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline |
418 |
+ |
$2e1\mu$ & all & 0 & 1715 \\ |
419 |
+ |
$2e1\mu$ & matched Z & -1+/--1 & 0.999+/-0.000583\\ |
420 |
+ |
$2e1\mu$ & matched W & -1+/--1 & 1+/-0\\ |
421 |
+ |
$2e1\mu$ & matched WZ & -1+/--1 & 0.999+/-0.000583\\ |
422 |
+ |
\hline \hline |
423 |
+ |
\multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline |
424 |
+ |
$2e1\mu$ & all & 0 & 31 \\ |
425 |
+ |
$2e1\mu$ & matched Z & -1+/--1 & 1+/-0\\ |
426 |
+ |
$2e1\mu$ & matched W & -1+/--1 & 1+/-0\\ |
427 |
+ |
$2e1\mu$ & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline |
428 |
+ |
\end{tabular} |
429 |
+ |
\end{center} |
430 |
+ |
\caption{Fractions of events with correctly matched leptons |
431 |
+ |
to true decay product of \W and \Z decays for final states |
432 |
+ |
with generated $\Z\to ee$ decays} |
433 |
+ |
\label{tab:wz-matcheffi-Zee} |
434 |
+ |
\end{table} |
435 |
+ |
|
436 |
+ |
|
437 |
+ |
|
438 |
+ |
\begin{table}[tbp] |
439 |
+ |
\begin{center} |
440 |
+ |
\begin{tabular}{llcc} \hline |
441 |
+ |
& & \multicolumn{2}{c}{Generated decay:} \\ |
442 |
+ |
& & \multicolumn{2}{c}{$Z \to \mu\mu $} \\ |
443 |
+ |
Selection channel & & $W \to e$ & $W \to \mu$ |
444 |
+ |
\\ \hline |
445 |
+ |
\hline \hline |
446 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
447 |
+ |
$2\mu1e$ & all & 1895 & 2 \\ |
448 |
+ |
$2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\ |
449 |
+ |
$2\mu1e$ & matched W & 0.985+/-0.00282 & 0+/--1\\ |
450 |
+ |
$2\mu1e$ & matched WZ & 0.985+/-0.00282 & 0+/--1\\ |
451 |
+ |
\hline \hline |
452 |
+ |
\multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline |
453 |
+ |
$2\mu1e$ & all & 1847 & 0 \\ |
454 |
+ |
$2\mu1e$ & matched Z & 1+/-0 & -1+/--1\\ |
455 |
+ |
$2\mu1e$ & matched W & 0.986+/-0.00274 & -1+/--1\\ |
456 |
+ |
$2\mu1e$ & matched WZ & 0.986+/-0.00274 & -1+/--1\\ |
457 |
+ |
\hline \hline |
458 |
+ |
\multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline |
459 |
+ |
$2\mu1e$ & all & 48 & 2 \\ |
460 |
+ |
$2\mu1e$ & matched Z & 1+/-0 & 1+/-0\\ |
461 |
+ |
$2\mu1e$ & matched W & 0.938+/-0.0349 & 0+/--1\\ |
462 |
+ |
$2\mu1e$ & matched WZ & 0.938+/-0.0349 & 0+/--1\\ |
463 |
+ |
\hline \hline |
464 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
465 |
+ |
$3\mu$ & all & 0 & 2251 \\ |
466 |
+ |
$3\mu$ & matched Z & -1+/--1 & 0.943+/-0.00488\\ |
467 |
+ |
$3\mu$ & matched W & -1+/--1 & 0.933+/-0.00526\\ |
468 |
+ |
$3\mu$ & matched WZ & -1+/--1 & 0.933+/-0.00526\\ |
469 |
+ |
\hline \hline |
470 |
+ |
\multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline |
471 |
+ |
$3\mu$ & all & 0 & 2207 \\ |
472 |
+ |
$3\mu$ & matched Z & -1+/--1 & 0.944+/-0.0049\\ |
473 |
+ |
$3\mu$ & matched W & -1+/--1 & 0.934+/-0.00529\\ |
474 |
+ |
$3\mu$ & matched WZ & -1+/--1 & 0.934+/-0.00529\\ |
475 |
+ |
\hline \hline |
476 |
+ |
\multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline |
477 |
+ |
$3\mu$ & all & 0 & 44 \\ |
478 |
+ |
$3\mu$ & matched Z & -1+/--1 & 0.909+/-0.0433\\ |
479 |
+ |
$3\mu$ & matched W & -1+/--1 & 0.909+/-0.0433\\ |
480 |
+ |
$3\mu$ & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline |
481 |
+ |
\end{tabular} |
482 |
+ |
\end{center} |
483 |
+ |
\caption{Fractions of MC \WZ events with correctly matched leptons |
484 |
+ |
to true decay product of \W and \Z decays for final states |
485 |
+ |
with generated $\Z\to \mu\mu$ decays} |
486 |
+ |
\label{tab:wz-matcheffi-Zmumu} |
487 |
+ |
\end{table} |
488 |
|
|