ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/selection.tex (file contents):
Revision 1.1 by vuko, Wed Jun 11 15:18:44 2008 UTC vs.
Revision 1.10 by vuko, Sat Jun 21 15:32:35 2008 UTC

# Line 1 | Line 1
1   \section{Event reconstruction}
2   \label{sec:eventReconstruction}
3  
4 < \subsection{Trigger selection and efficiencies}
5 <
6 <
7 < \subsection{Lepton identification}
8 <
4 > The four possible final states of \WZ
5 > production with electrons and muons in the final state are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 > and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7 > denoted as follows:
8 > \begin{itemize}
9 > \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
10 > \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
11 > \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
12 > \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
13 > \end{itemize}
14  
15  
16 < \subsection{\WZ candidate selection}
12 <
16 > \subsection{Trigger selection and efficiencies}
17  
18 < \subsection{Signal extraction}
18 > Events stemming from the three-lepton final states of $\WZ$ production
19 > are collected by the electron and/or muon triggers. For each channel,
20 > a minimun number of HLT requirements is chosen while keeping
21 > the HLT efficiency for selected events close to 100\%. The same
22 > HLT requirements are used for channels with the same Z decay mode:
23 > \begin{itemize}
24 > \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
25 > \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
26 > \end{itemize}
27 > The HLT efficiencies for all modes for events passing the full
28 > selection described in this section are given in table~\ref{tab:hlteff}.
29 >
30 >
31 > \begin{table}[tbph]
32 > \begin{center}
33 >
34 > \begin{tabular}{llc} \hline \hline
35 > Channel    &   HLT selection                                   & HLT efficiency \\ \hline
36 > $3e$       &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.996         \\
37 > $2e1\mu$   &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.969         \\
38 > $2\mu 1e$  &   HLTSingleMuonIso                                &  0.966         \\
39 > $3\mu$     &   HLTSingleMuonIso                                &  0.994         \\ \hline \hline
40 > \end{tabular}
41 >
42 > \end{center}
43 > \caption{HLT Efficiencies, in percent, for all
44 >  the events in the generated phase space for events retained  by
45 >  the complete event selection.}
46 > \label{tab:hlteff}
47 > \end{table}
48 >
49 >
50 > \begin{figure}[tbp]
51 >  \begin{center}
52 >  \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
53 >  \caption{Muon isolation variables for the muon associated
54 >    to the \W-boson decay in $2e1\mu$ events: the left plot
55 >    shows the sum of calorimetric energy in a $\Delta R=0.3$ cone
56 >    around the muon candidate; the right plot shows the sum of
57 >    transverse momenta of tracks within a $\Delta R = 0.25$ cone around
58 >    the muon candidate. The normalization of signal and background
59 >    distributions is arbitrary.
60 > }
61 >  \label{fig:mu_isol}
62 >  \end{center}
63 > \end{figure}
64 >
65 > \begin{figure}[tb]
66 >  \begin{center}
67 >  \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
68 >  \caption{
69 >    Muon impact parameter significance distribution
70 >    in $2e1\mu$ events. The normalization of signal and background
71 >    distributions is arbitrary.
72 >  }
73 >  \label{fig:mu_SIP}
74 >  \end{center}
75 > \end{figure}
76  
77  
78 < \subsection{Systematic uncertainties}
78 > \subsection{Lepton identification}
79 > \label{sec:leptonId}
80  
81 + The requirements used for electron identification in this analysis are described
82 + in~\cite{noteElectronID}.
83  
84 + Muon candidates are selected from global muons, which are reconstructed
85 + combining measurements in the muon chambers and the central tracker.
86 + An additional isolation criterion requires that the energy
87 + measured in the calorimeters within a $\Delta R = 0.3$ cone around the
88 + muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
89 + within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 \gev.
90 + These cuts reduce the background from muons originated in
91 + \b-quark decays of the $\Zbbbar$ background, which are close to tracks
92 + and clusters from the other \b-quark decay products.
93 +
94 + %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
95 + %performance of the isolation cut. The distribution of the isolation
96 + %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
97 + %interesting, since muons only stem from  \b-quark decays.
98 +
99 + The significance of the muon impact parameter in the plane
100 + transverse to the beam, $S_{IP}$, discriminates against leptons from
101 + heavy-quark decays in all Standard Model background processes. This
102 + variable is defined as the ratio between the measured impact parameter
103 + and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
104 + satisfy $S_{IP}<3$. This requirement is applied only for muons
105 + and not for electrons. For electrons, a significant fraction of the
106 + background comes from fake electrons and not from heavy quark decays,
107 + and a cut on the impact parameter significance shows no improvement
108 + in significance there, as can be seen in Figure~\ref{fig:wl_IP_SvsCut}.
109 +
110 + \begin{figure}[p]
111 +  \begin{center}
112 +  \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
113 +  \caption{Efficiency for signal and background as a function
114 +    of the cut value on the \W-boson lepton impact parameter
115 +    significance. All other cuts but the cut on this variable
116 +    are applied.
117 + %    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
118 + %    are considered.
119 +  }
120 +  \label{fig:wl_IP_eff}
121 +  \end{center}
122 + %\end{figure}
123 +
124 + %\begin{figure}[bt]
125 +  \begin{center}
126 +  \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
127 +  \caption{Signal significance as a function of the cut value on
128 +    the \W-boson lepton impact parameter significance. All other cuts but
129 +    the cut on this variable are applied.
130 + %    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev are considered.
131 +  }
132 +  \label{fig:wl_IP_SvsCut}
133 +  \end{center}
134 + \end{figure}
135 +
136 +
137 + \begin{table}[tbp]
138 + \begin{tabular}{|l|c|c|c|c|} \hline
139 +              &  $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
140 + \multicolumn{5}{|c|}{Lepton selection} \\ \hline
141 + Electrons     &   \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for Z reconstruction} & \\
142 +              &   \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for W} &  \\ \hline
143 + Muons         &  &  \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$}  \\
144 +              &  &  \multicolumn{3}{|c|}{ Calorimetric Isolation:$  {\tt IsoCalo}(\Delta R = 0.3)  < 5 \gev$}  \\
145 +              &  &  \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ }  \\ \hline
146 + HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
147 +                & \multicolumn{2}{|c|}{  HLTSingleMuonIso} \\ \hline
148 + \multicolumn{5}{|c|}{Z reconstruction} \\ \hline
149 + Lepton cuts   &  \multicolumn{4}{|c|}{for both Z leptons: $p_t > 15 GeV$} \\
150 + Mass window   &  \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
151 + Second Z veto &  \multicolumn{4}{|c|}{No independent second Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
152 + \multicolumn{5}{|c|}{W lepton selection} \\ \hline
153 +
154 + Other cuts    &     &        & $\Delta R(\mu_Z,e_W)>0.1$ &  \\ \hline
155 + Signal region  &    \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
156 +
157 + \end{tabular}
158 + \caption{Summary of all cuts used in the WZ selection}
159 + \label{tab:allcuts}
160 + \end{table}
161 +
162 +
163 + \begin{figure}[p]
164 +  \begin{center}
165 +  \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
166 +  \caption{Efficiency for signal and background as a function
167 +    of the cut value on the \W-boson lepton transverse momentum.
168 +    All other cuts but the cut on this variable are applied.
169 +    Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
170 +    are considered.}
171 +  \label{fig:wlpt_cuteff}
172 +  \end{center}
173 + %\end{figure}
174 +
175 + %\begin{figure}[bt]
176 +  \begin{center}
177 +  \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
178 +  \caption{Signal significance as a function of the cut value on
179 +    the \W-boson lepton transverse momentum. All other cuts but
180 +    the cut on this variable are applied. Only events with
181 +    81.1 GeV $< M_Z < $ 101.1 \gev are considered.}
182 +  \label{fig:wlpt_cutS}
183 +  \end{center}
184 + \end{figure}
185  
186  
187 + \subsection{\WZ candidate selection}
188  
189 + Events are accepted if they contain at least three charged leptons,
190 + either electrons or muons, with $p_t > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
191 + electrons,$| \eta | < 2.4$ for muons.
192 + as discussed in~\ref{sec:leptonId}.
193 +
194 + The \WZ candidate selection proceeds from building all possible
195 + \Z-boson candidates from same-flavour opposite-charge lepton pairs.
196 + For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
197 + defined in~\cite{noteElectronID}.
198 +
199 + Events are retained if the mass of this \Z-boson candidate is
200 + within 20 GeV of the Z-boson mass,$m_Z$. The event is
201 + rejected if a second Z candidate is found. This second Z candidate is done
202 + with all possible same-flavour opposite-charge combinations which are left
203 + after removing the two leptons already used for the first Z candidate. This
204 + veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant
205 + mass distribution for accepted \Z candidates is shown in
206 + Figure~\ref{fig:zcandidates}.
207 +
208 + % and the \Z mass resolution is shown in
209 + %Figure~\ref{fig:dzmass}.
210 +
211 + After the \Z-boson candidate is identified, the lepton associated
212 + to the  \W-boson decay is chosen from the remaining electrons and muons
213 + in the event that have not been used for reconstructing the \Z-boson.
214 + Electrons are required to pass the tight criteria described in
215 + \cite{noteElectronID}.  If the event contains more than three leptons,
216 + the highest $p_t$ is chosen as the one from the \W-boson decay, and
217 + the additional leptons are not considered further.
218 + The transverse momentum of this lepton is required to be larger
219 + than 20 GeV. This last requirement is effective in rejecting
220 + the \Zbbbar and \Zjets backgrounds, see Figure~\ref{fig:wlpt_cuteff},
221 + and the cut value is chosen in
222 + the range that maximises the significance as shown in
223 + Figure~\ref{fig:wlpt_cutS}.
224 +
225 + An additional requirement on the isolation between electron and muons is applied
226 + for the $2\mu 1e$ channel, by demanding $\Delta R$ between the electron associated
227 + to the \W-decay and any of the two muons associated to the \Z-decay be greater than
228 + 0.1. This requirement allows to suppress the contributions of $\Z \to \mu\mu$
229 + decays, where one of the two muons radiates a photon which is reconstructed
230 + as electrons, possibly after conversion, which shows up as a peak at  around 60 GeV
231 + in the Z mass distribution, as shown in figure~\ref{fig:Z2mu1e_60GeVPeak}.
232 +
233 + The summary of the selection can be seen in Table~\ref{tab:allcuts}.
234 +
235 + The expected number of events passing the various steps of the selection
236 + is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
237 + Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
238 + the different generated \W and \Z decays. It can be seen there that \WZ\
239 + events with both the \W and the \Z boson decaying into electrons or muons
240 + almost always get reconstructed with the correct flavour. It is to be
241 + noted in addition that each of our four selection channels gets a small
242 + contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
243 + selection efficiency for these events is however smaller which is mostly due
244 + to the \pt cut on the third lepton, since the \pt spectrum of electrons or
245 + muons from $W \to \tau \to e/\mu$ decays is softer.
246 +
247 + \begin{table}[p]
248 +  \begin{center}
249 +
250 +
251 +
252 +
253 + \begin{tabular}{lcccc} \hline
254 + \multicolumn{5}{c}{ {\bf $3e$ Channel}} \\ \hline  \hline
255 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
256 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
257 + Found $Z \to ee$         & 204.969 (37.5401 \%)  & 27800.5 (38.203 \%)   & 502344 (39.62 \%)     & 2920.59 (16.6357 \%) \\
258 + Found $W \to e$          & 41.9925 (20.4872 \%)  & 171.053 (0.615286 \%)         & 309.563 (0.0616238 \%)        & 13.8293 (0.473511 \%) \\
259 + W Lepton Pt cut          & 34.8561 (83.0056 \%)  & 23.7161 (13.8648 \%)  & 86.7924 (28.037 \%)   & 8.25515 (59.6931 \%) \\
260 + Passes HLT               & 34.7185 (99.6052 \%)  & 23.5679 (99.375 \%)   & 86.7924 (100 \%)      & 8.25515 (100 \%) \\
261 + Z mass window    & 31.5533 (90.8834 \%)  & 17.4906 (74.2138 \%)  & 51.8927 (59.7894 \%)  & 3.2585 (39.4724 \%) \\ \hline
262 + Overall efficiency  & 5.77899 \% & 0.0240354 \% & 0.00409279 \% & 0.0185605 \% \\
263 + \hline
264 + \end{tabular}
265 + \begin{tabular}{lcccc} \hline
266 + \multicolumn{5}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline  \hline
267 + Step   & WZ  & bbll  & Z+jets  & \ttjets\\ \hline
268 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
269 + Found $Z \to ee$         & 204.969 (37.5401 \%)  & 27800.5 (38.203 \%)   & 502344 (39.62 \%)     & 2920.59 (16.6357 \%) \\
270 + Found $W \to \mu$        & 47.9099 (23.3743 \%)  & 747.725 (2.68961 \%)  & 2194.09 (0.436771 \%)         & 56.7645 (1.9436 \%) \\
271 + W Lepton Pt cut          & 37.0973 (77.4313 \%)  & 9.63467 (1.28853 \%)  & 9.57604 (0.436446 \%)         & 17.5382 (30.8965 \%) \\
272 + Passes HLT               & 36.1929 (97.5623 \%)  & 9.26411 (96.1538 \%)  & 8.32189 (86.9033 \%)  & 15.2488 (86.9457 \%) \\
273 + Z mass window    & 32.5166 (89.8425 \%)  & 8.15242 (88 \%)       & 7.31467 (87.8968 \%)  & 4.91533 (32.2343 \%) \\ \hline
274 + Overall efficiency  & 5.95542 \% & 0.0112029 \% & 0.000576911 \% & 0.0279978 \% \\
275 + \hline
276 + \end{tabular}
277 +
278 + \begin{tabular}{lcccc} \hline
279 + \multicolumn{5}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline  \hline
280 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
281 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
282 + Found $Z \to \mu\mu$     & 233.75 (42.8114 \%)   & 31889.4 (43.8219 \%)  & 577257 (45.5284 \%)   & 2778.81 (15.8282 \%) \\
283 + Found $W \to e$          & 48.7553 (20.8579 \%)  & 213.519 (0.669562 \%)         & 701.695 (0.121557 \%)         & 15.1085 (0.543704 \%) \\
284 + W Lepton Pt cut                  & 40.6556 (83.3871 \%)  & 50.6191 (23.707 \%)   & 464.493 (66.196 \%)   & 10.2745 (68.0047 \%) \\
285 + $\Delta R(e,\mu)$ cut    & 40.5573 (99.7582 \%)  & 23.3456 (46.1201 \%)  & 92.9813 (20.0178 \%)  & 7.14967 (69.5865 \%) \\
286 + Passes HLT                       & 39.4171 (97.1886 \%)  & 23.1973 (99.3651 \%)  & 88.7791 (95.4806 \%)  & 6.6245 (92.6546 \%) \\
287 + Z mass window    & 35.5638 (90.2244 \%)  & 18.8988 (81.4696 \%)  & 50.2509 (56.6022 \%)  & 2.84083 (42.8837 \%) \\ \hline
288 + Overall efficiency  & 6.51352 \% & 0.0259704 \% & 0.00396331 \% & 0.0161814 \% \\
289 + \hline
290 + \end{tabular}
291 +
292 +
293 + \begin{tabular}{lcccc} \hline
294 + \multicolumn{5}{c}{ {\bf $3\mu$ Channel}} \\ \hline  \hline
295 + Step   & WZ  & bbll  & Z+jets  & TTbar+jets\\ \hline
296 + All events       & 546   & 72770.4       & 1.2679e+06    & 17556.1 \\
297 + Found $Z \to \mu\mu$     & 233.75 (42.8114 \%)   & 31889.4 (43.8219 \%)  & 577257 (45.5284 \%)   & 2778.81 (15.8282 \%) \\
298 + Found $W \to \mu$        & 57.7986 (24.7267 \%)  & 810.721 (2.54229 \%)  & 2520.69 (0.436668 \%)         & 35.3061 (1.27054 \%) \\
299 + W Lepton Pt cut                  & 44.2533 (76.5646 \%)  & 8.89355 (1.09699 \%)  & 1.84115 (0.0730414 \%)        & 1.683 (4.76688 \%) \\
300 + Passes HLT                       & 43.9977 (99.4225 \%)  & 8.89355 (100 \%)      & 1.84115 (100 \%)      & 1.683 (100 \%) \\
301 + Z mass window    & 40.0462 (91.0188 \%)  & 7.78185 (87.5 \%)     & 1.84115 (100 \%)      & 1.15783 (68.7957 \%) \\ \hline
302 + Overall efficiency  & 7.33446 \% & 0.0106937 \% & 0.000145212 \% & 0.00659501 \% \\
303 + \hline
304 + \end{tabular}
305 +
306 +
307 + \caption{Expected number of signal and background events passing the different
308 +  selections steps in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
309 +  of 1 \invfb.}
310 + \label{tab:sel-effA}
311 + \end{center}
312 + \end{table}
313 +
314 +
315 +
316 + %\subsection{Signal extraction}
317 + %\input D0Matrix
318 + \input zjetbackground
319 +
320 +
321 + \section{Systematic uncertainties}
322 + \input Sys
323 +
324 +
325 + \begin{figure}[bt]
326 +  \begin{center}
327 +  \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
328 +  \caption{Missing transverse mass for the four signal categories.
329 +    The distributions  show the number of expected events
330 +    for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 \gev
331 +    are shown. All selection cuts are applied.}
332 +  \label{fig:met}
333 +  \end{center}
334 + \end{figure}
335 +
336 + \begin{figure}[bt]
337 +  \begin{center}
338 +  \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
339 +  \caption{W transverse mass for the four signal categories.
340 +    The distributions  show the number of expected events
341 +    for $1 fb^{-1}$. Only events with 81.1 GeV $< M_Z < $ 101.1 GeV are shown.
342 +    All selection cuts are applied.}
343 +  \label{fig:mtw}
344 +  \end{center}
345 + \end{figure}
346 +
347 +
348 +
349 +
350 + \begin{table}[tbp]
351 + \begin{center}
352 + \begin{tabular}{lccccc}
353 + \hline \hline
354 + & \multicolumn{5}{c}{$Z \to ee $} \\
355 +   &  $W \to e$
356 +   &  $W \to \mu$
357 +   &  $W \to \tau \to e$
358 +   &  $W \to \tau \to \mu$
359 +   &  $W \to \tau \to hadrons$
360 + \\ \hline
361 + $3e$       &  17.4 \%  &  0.0319 \%  &  6.42 \%  &  0 \%  &  0.162 \% \\
362 + $2e1\mu$   &  0 \%  &  18.6 \%  &  0 \%  &  5.53 \%  &  0.0485 \% \\
363 + $2\mu1e$   &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
364 + $3\mu$     &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
365 + \hline \hline
366 + & \multicolumn{5}{c}{$Z \to \mu\mu $} \\
367 +   &  $W \to e$
368 +   &  $W \to \mu$
369 +   &  $W \to \tau \to e$
370 +   &  $W \to \tau \to \mu$
371 +   &  $W \to \tau \to hadrons$
372 + \\ \hline
373 + $3e$        &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
374 + $2e1\mu$   &  0.0104 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
375 + $2\mu1e$   &  19.6 \%  &  0.0208 \%  &  5.56 \%  &  0 \%  &  0.18 \% \\
376 + $3\mu$     &  0 \%  &  23.4 \%  &  0.0573 \%  &  6.77 \%  &  0.0164 \% \\
377 + \hline \hline
378 + \end{tabular}
379 + \end{center}
380 + \caption{Selection efficiency for signal events in the four selection channels for the different
381 +  generated \W and \Z decay channels.}
382 + \label{tab:wz-effimatrix}
383 + \end{table}
384 +
385 +
386 + \begin{table}[tbp]
387 + \begin{center}
388 + \begin{tabular}{llcc} \hline
389 +  & & \multicolumn{2}{c}{Generated decay:} \\
390 +  & & \multicolumn{2}{c}{$Z \to ee $} \\
391 + Selection channel  &    &  $W \to e$   &  $W \to \mu$ \\ \hline
392 + \hline \hline
393 + \multicolumn{4}{c}{all} \\ \hline
394 + $3e$        & all & 1644         & 3    \\
395 + $3e$        & matched Z & 0.937+/-0.00598 & 1+/-0\\
396 + $3e$        & matched W & 0.915+/-0.00688 & 0+/--1\\
397 + $3e$        & matched WZ & 0.914+/-0.00691 & 0+/--1\\
398 + \hline \hline
399 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
400 + $3e$        & all & 1602         & 0    \\
401 + $3e$        & matched Z & 0.938+/-0.00604 & -1+/--1\\
402 + $3e$        & matched W & 0.915+/-0.00696 & -1+/--1\\
403 + $3e$        & matched WZ & 0.914+/-0.00699 & -1+/--1\\
404 + \hline \hline
405 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
406 + $3e$        & all & 42   & 3    \\
407 + $3e$        & matched Z & 0.929+/-0.0397 & 1+/-0\\
408 + $3e$        & matched W & 0.905+/-0.0453 & 0+/--1\\
409 + $3e$        & matched WZ & 0.905+/-0.0453 & 0+/--1\\
410 + \hline \hline
411 + \multicolumn{4}{c}{all} \\ \hline
412 + $2e1\mu$   & all & 0     & 1746 \\
413 + $2e1\mu$   & matched Z & -1+/--1 & 0.999+/-0.000573\\
414 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
415 + $2e1\mu$   & matched WZ & -1+/--1 & 0.999+/-0.000573\\
416 + \hline \hline
417 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
418 + $2e1\mu$   & all & 0     & 1715 \\
419 + $2e1\mu$   & matched Z & -1+/--1 & 0.999+/-0.000583\\
420 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
421 + $2e1\mu$   & matched WZ & -1+/--1 & 0.999+/-0.000583\\
422 + \hline \hline
423 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
424 + $2e1\mu$   & all & 0     & 31   \\
425 + $2e1\mu$   & matched Z & -1+/--1 & 1+/-0\\
426 + $2e1\mu$   & matched W & -1+/--1 & 1+/-0\\
427 + $2e1\mu$   & matched WZ & -1+/--1 & 1+/-0\\ \hline \hline
428 + \end{tabular}
429 + \end{center}
430 + \caption{Fractions of events with correctly matched leptons
431 +  to true decay product of \W and \Z decays for final states
432 +  with generated $\Z\to ee$ decays}
433 + \label{tab:wz-matcheffi-Zee}
434 + \end{table}
435 +
436 +
437 +
438 + \begin{table}[tbp]
439 + \begin{center}
440 + \begin{tabular}{llcc} \hline
441 +  & & \multicolumn{2}{c}{Generated decay:} \\
442 + & & \multicolumn{2}{c}{$Z \to \mu\mu $} \\
443 + Selection channel  &    &  $W \to e$   &  $W \to \mu$
444 + \\ \hline
445 + \hline \hline
446 + \multicolumn{4}{c}{all} \\ \hline
447 + $2\mu1e$   & all & 1895  & 2    \\
448 + $2\mu1e$   & matched Z & 1+/-0 & 1+/-0\\
449 + $2\mu1e$   & matched W & 0.985+/-0.00282 & 0+/--1\\
450 + $2\mu1e$   & matched WZ & 0.985+/-0.00282 & 0+/--1\\
451 + \hline \hline
452 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
453 + $2\mu1e$   & all & 1847  & 0    \\
454 + $2\mu1e$   & matched Z & 1+/-0 & -1+/--1\\
455 + $2\mu1e$   & matched W & 0.986+/-0.00274 & -1+/--1\\
456 + $2\mu1e$   & matched WZ & 0.986+/-0.00274 & -1+/--1\\
457 + \hline \hline
458 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
459 + $2\mu1e$   & all & 48    & 2    \\
460 + $2\mu1e$   & matched Z & 1+/-0 & 1+/-0\\
461 + $2\mu1e$   & matched W & 0.938+/-0.0349 & 0+/--1\\
462 + $2\mu1e$   & matched WZ & 0.938+/-0.0349 & 0+/--1\\
463 + \hline \hline
464 + \multicolumn{4}{c}{all} \\ \hline
465 + $3\mu$     & all & 0     & 2251 \\
466 + $3\mu$     & matched Z & -1+/--1 & 0.943+/-0.00488\\
467 + $3\mu$     & matched W & -1+/--1 & 0.933+/-0.00526\\
468 + $3\mu$     & matched WZ & -1+/--1 & 0.933+/-0.00526\\
469 + \hline \hline
470 + \multicolumn{4}{c}{exactly 1 W lepton candidate} \\ \hline
471 + $3\mu$     & all & 0     & 2207 \\
472 + $3\mu$     & matched Z & -1+/--1 & 0.944+/-0.0049\\
473 + $3\mu$     & matched W & -1+/--1 & 0.934+/-0.00529\\
474 + $3\mu$     & matched WZ & -1+/--1 & 0.934+/-0.00529\\
475 + \hline \hline
476 + \multicolumn{4}{c}{more than 1 W lepton candidate} \\ \hline
477 + $3\mu$     & all & 0     & 44   \\
478 + $3\mu$     & matched Z & -1+/--1 & 0.909+/-0.0433\\
479 + $3\mu$     & matched W & -1+/--1 & 0.909+/-0.0433\\
480 + $3\mu$     & matched WZ & -1+/--1 & 0.909+/-0.0433\\ \hline \hline
481 + \end{tabular}
482 + \end{center}
483 + \caption{Fractions of MC \WZ events with correctly matched leptons
484 +  to true decay product of \W and \Z decays for final states
485 +  with generated $\Z\to \mu\mu$ decays}
486 + \label{tab:wz-matcheffi-Zmumu}
487 + \end{table}
488  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines