1 |
|
\section{Event reconstruction} |
2 |
|
\label{sec:eventReconstruction} |
3 |
|
|
4 |
< |
The four possible final states of \WZ |
5 |
< |
production with electrons and muons are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$ |
6 |
< |
and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes, |
7 |
< |
denoted as follows: |
4 |
> |
We categorize \WZ\ three-lepton final state as following |
5 |
|
\begin{itemize} |
6 |
|
\item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$. |
7 |
|
\item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$. |
13 |
|
\subsection{Trigger selection and efficiencies} |
14 |
|
|
15 |
|
Events stemming from the three-lepton final states of $\WZ$ production |
16 |
< |
are collected by the electron and muon triggers. For each channel, |
16 |
> |
are collected by the electron and/or muon triggers. For each channel, |
17 |
|
a minimun number of HLT requirements is chosen while keeping |
18 |
|
the HLT efficiency for selected events close to 100\%. The same |
19 |
< |
HLT requirements are used for channels with the same Z decay mode: |
19 |
> |
HLT requirements are used for channels with the same \Z decay mode: |
20 |
|
\begin{itemize} |
21 |
|
\item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed |
22 |
|
\item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso |
24 |
|
The HLT efficiencies for all modes for events passing the full |
25 |
|
selection described in this section are given in table~\ref{tab:hlteff}. |
26 |
|
|
30 |
– |
|
27 |
|
\begin{table}[tbph] |
28 |
|
\begin{center} |
29 |
|
|
36 |
|
\end{tabular} |
37 |
|
|
38 |
|
\end{center} |
39 |
< |
\caption{HLT Efficiencies, in percent, for all |
40 |
< |
the events in the generated phase space for events retained by |
45 |
< |
the complete event selection.} |
39 |
> |
\caption{HLT Efficiencies for all the events in the generated phase space that |
40 |
> |
have been retained by the complete event selection.} |
41 |
|
\label{tab:hlteff} |
42 |
|
\end{table} |
43 |
|
|
44 |
+ |
|
45 |
+ |
\begin{figure}[tbp] |
46 |
+ |
\begin{center} |
47 |
+ |
\scalebox{0.7}{\includegraphics{figs/mu_isol.eps}} |
48 |
+ |
\caption{Muon isolation variables for the muon associated |
49 |
+ |
to the \W boson decay in $2e1\mu$ events: in the left plot |
50 |
+ |
we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone |
51 |
+ |
around the muon candidate; in the right plot we display the sum of |
52 |
+ |
transverse momenta of tracks within a $\Delta R = 0.25$ cone around |
53 |
+ |
the muon candidate. The normalization of signal and background |
54 |
+ |
distributions is arbitrary. |
55 |
+ |
} |
56 |
+ |
\label{fig:mu_isol} |
57 |
+ |
\end{center} |
58 |
+ |
\end{figure} |
59 |
+ |
|
60 |
+ |
\begin{figure}[tb] |
61 |
+ |
\begin{center} |
62 |
+ |
\scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}} |
63 |
+ |
\caption{ |
64 |
+ |
Muon impact parameter significance distribution |
65 |
+ |
in $2e1\mu$ events. The normalization of signal and background |
66 |
+ |
distributions is arbitrary. |
67 |
+ |
} |
68 |
+ |
\label{fig:mu_SIP} |
69 |
+ |
\end{center} |
70 |
+ |
\end{figure} |
71 |
+ |
|
72 |
+ |
|
73 |
|
\subsection{Lepton identification} |
74 |
|
\label{sec:leptonId} |
75 |
|
|
77 |
|
in~\cite{noteElectronID}. |
78 |
|
|
79 |
|
Muon candidates are selected from global muons, which are reconstructed |
80 |
< |
combining measurements in the muon chambers and the central tracker. |
81 |
< |
An additional isolation criterion requires that the energy |
80 |
> |
by combining measurements in the muon chambers and the central tracker. |
81 |
> |
An additional isolation criterion is imposed to require the energy |
82 |
|
measured in the calorimeters within a $\Delta R = 0.3$ cone around the |
83 |
< |
muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks |
84 |
< |
within a $\Delta R = 0.35$ cone around the muon must be smaller than 2.5 |
85 |
< |
GeV. These cuts reduce the background from muons originated in |
83 |
> |
muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks |
84 |
> |
within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV. |
85 |
> |
These cuts reduce the background from muons originated in |
86 |
|
\b-quark decays of the $\Zbbbar$ background, which are close to tracks |
87 |
|
and clusters from the other \b-quark decay products. |
88 |
+ |
The signal and background distributions of these isolation variables |
89 |
+ |
are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate |
90 |
+ |
events. |
91 |
|
|
92 |
|
%Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the |
93 |
|
%performance of the isolation cut. The distribution of the isolation |
94 |
|
%variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly |
95 |
|
%interesting, since muons only stem from \b-quark decays. |
96 |
|
|
97 |
+ |
The significance of the muon impact parameter in the plane |
98 |
+ |
transverse to the beam, $S_{IP}$, discriminates against leptons from |
99 |
+ |
heavy-quark decays in all standard model background processes. This |
100 |
+ |
variable is defined as the ratio between the measured impact parameter |
101 |
+ |
and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to |
102 |
+ |
satisfy $S_{IP}<3$. This requirement is applied only for muon candidates |
103 |
+ |
and not for electrons. For electron candidates, a significant fraction of the |
104 |
+ |
background comes from misidentified light quark jets. Thus, |
105 |
+ |
the requirement on the impact parameter significance does not |
106 |
+ |
increase the significance of the $\W\to e$ channels, as can be seen in |
107 |
+ |
Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon |
108 |
+ |
in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}. |
109 |
+ |
|
110 |
+ |
\begin{figure}[p] |
111 |
+ |
\begin{center} |
112 |
+ |
\scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}} |
113 |
+ |
\caption{Efficiency for signal and background as a function |
114 |
+ |
of the requirement on the \W-boson lepton impact parameter |
115 |
+ |
significance. All other criteria but the one on impact parameter |
116 |
+ |
significance are applied. |
117 |
+ |
% Only events with 81 GeV $< M_Z < $ 101 \gev |
118 |
+ |
% are considered. |
119 |
+ |
} |
120 |
+ |
\label{fig:wl_IP_eff} |
121 |
+ |
\end{center} |
122 |
+ |
%\end{figure} |
123 |
+ |
|
124 |
+ |
%\begin{figure}[bt] |
125 |
+ |
\begin{center} |
126 |
+ |
\scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}} |
127 |
+ |
\caption{Signal significance as a function of requirement on |
128 |
+ |
the \W-boson lepton impact parameter significance. All other criteria but |
129 |
+ |
the requirement on the impact parameter significance are applied. |
130 |
+ |
% Only events with 81 GeV $< M_Z < $ 101 \gev are considered. |
131 |
+ |
} |
132 |
+ |
\label{fig:wl_IP_SvsCut} |
133 |
+ |
\end{center} |
134 |
+ |
\end{figure} |
135 |
+ |
|
136 |
+ |
|
137 |
+ |
\begin{table}[tbp] |
138 |
+ |
\begin{tabular}{|l|c|c|c|c|} \hline |
139 |
+ |
& $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline |
140 |
+ |
\multicolumn{5}{|c|}{Lepton selection} \\ \hline |
141 |
+ |
Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\ |
142 |
+ |
& \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} & \\ \hline |
143 |
+ |
Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\ |
144 |
+ |
& & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\ |
145 |
+ |
& & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline |
146 |
+ |
HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed} |
147 |
+ |
& \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline |
148 |
+ |
\multicolumn{5}{|c|}{\Z reconstruction} \\ \hline |
149 |
+ |
Lepton cuts & \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\ |
150 |
+ |
Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\ |
151 |
+ |
Second \Z veto & \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline |
152 |
+ |
\multicolumn{5}{|c|}{\W lepton selection} \\ \hline |
153 |
+ |
|
154 |
+ |
Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline |
155 |
+ |
Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline |
156 |
+ |
|
157 |
+ |
\end{tabular} |
158 |
+ |
\caption{Summary of the criteria we use to select \WZ\ final state} |
159 |
+ |
\label{tab:allcuts} |
160 |
+ |
\end{table} |
161 |
+ |
|
162 |
+ |
|
163 |
+ |
\begin{figure}[p] |
164 |
+ |
\begin{center} |
165 |
+ |
\scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}} |
166 |
+ |
\caption{Efficiency for signal and background as a function |
167 |
+ |
of the cut value on the \W-boson lepton transverse momentum. |
168 |
+ |
All other cuts but the cut on this variable are applied. |
169 |
+ |
Only events with 81 GeV $< M_Z < $ 101 \gev |
170 |
+ |
are considered.} |
171 |
+ |
\label{fig:wlpt_cuteff} |
172 |
+ |
\end{center} |
173 |
+ |
%\end{figure} |
174 |
+ |
|
175 |
+ |
%\begin{figure}[bt] |
176 |
+ |
\begin{center} |
177 |
+ |
\scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}} |
178 |
+ |
\caption{Signal significance as a function of the cut value on |
179 |
+ |
the \W-boson lepton transverse momentum. All other cuts but |
180 |
+ |
the cut on this variable are applied. Only events with |
181 |
+ |
81 GeV $< M_Z < $ 101 \gev are considered.} |
182 |
+ |
\label{fig:wlpt_cutS} |
183 |
+ |
\end{center} |
184 |
+ |
\end{figure} |
185 |
+ |
|
186 |
|
|
187 |
|
\subsection{\WZ candidate selection} |
188 |
|
|
189 |
|
Events are accepted if they contain at least three charged leptons, |
190 |
< |
either electrons or muons, with $p_t > 10\,\mathrm{GeV}$ and $| \eta | < 2.5$, as |
191 |
< |
discussed in~\ref{sec:leptonId}. |
190 |
> |
either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for |
191 |
> |
electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}. |
192 |
|
|
193 |
|
The \WZ candidate selection proceeds from building all possible |
194 |
|
\Z-boson candidates from same-flavour opposite-charge lepton pairs. |
195 |
< |
For $\Z \to ee$ decays, electrons have to fullfil the loose requirements |
195 |
> |
For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements |
196 |
|
defined in~\cite{noteElectronID}. |
197 |
|
|
198 |
< |
Events are retained if the mass of this \Z-boson candidate is |
199 |
< |
within 20 GeV of the Z-boson mass,$m_Z$. The event is |
200 |
< |
rejected if a second Z candidate is found. This second Z candidate is done |
201 |
< |
with all possible same-flavour opposite-charge combinations which are left |
202 |
< |
after removing the two leptons already used for the first Z candidate. This |
203 |
< |
veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant |
204 |
< |
mass distribution for accepted \Z candidates is shown in |
205 |
< |
Figure~\ref{fig:zcandidates}. |
198 |
> |
Events are retained if the mass of the \Z boson candidate is |
199 |
> |
within 20 GeV of the \Z boson mass, $m_Z$. The event is |
200 |
> |
rejected if a second \Z candidate is found. This second \Z boson candidate is formed |
201 |
> |
using all possible same-flavour opposite-charge combinations which are left |
202 |
> |
after removing the two leptons already used for the first \Z boson candidate. This |
203 |
> |
secondary \Z boson veto helps to suppress $\Z\Z$ events. |
204 |
> |
%The invariant |
205 |
> |
%mass distribution for accepted \Z candidates is shown in |
206 |
> |
%Figure~\ref{fig:zcandidates}. |
207 |
|
|
208 |
|
% and the \Z mass resolution is shown in |
209 |
|
%Figure~\ref{fig:dzmass}. |
210 |
|
|
211 |
< |
After the \Z-boson candidate is identified, the lepton associated |
212 |
< |
to the \W-boson decay is chosen from the remaining electrons and muons |
213 |
< |
in the event that have not been used for reconstructing the \Z-boson. |
214 |
< |
Electrons are required to pass the tight criteria described in |
215 |
< |
\cite{noteElectronID}. If the event contains more than three leptons, |
216 |
< |
the highest $p_t$ is chosen as the one from the \W-boson decay, and |
217 |
< |
the additional leptons are not considered further. |
218 |
< |
The transverse momentum of this lepton is required to be larger |
219 |
< |
than 20 GeV. This last requirement is effective in rejecting |
220 |
< |
the \Zbbbar and \Zjets backgrounds, and the cut value is chosen in |
221 |
< |
the range that maximises the significance as shown in |
222 |
< |
Figure~\ref{fig:s_vs_wlpt}. |
223 |
< |
|
224 |
< |
|
225 |
< |
The expected number of events passing the various steps of the selection |
226 |
< |
is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}. |
227 |
< |
Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for |
228 |
< |
the different generated \W and \Z decays. It can be seen there that \WZ\ |
229 |
< |
events with both the \W and the \Z boson decaying into electrons or muons |
230 |
< |
almost always get reconstructed with the correct flavour. It is to be |
231 |
< |
noted in addition that each of our four selection channels gets a small |
232 |
< |
contribution from $W \to \tau \to e/\mu$ decays as one would expect. The |
233 |
< |
selection efficiency for these events is however smaller which is mostly due |
234 |
< |
to the \pt cut on the third lepton, since the \pt spectrum of electrons or |
235 |
< |
muons from $W \to \tau \to e/\mu$ decays is softer. |
211 |
> |
After the \Z boson candidate is identified, the remaining leptons in the event |
212 |
> |
are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID} |
213 |
> |
or, for muons, all criteria described in section~\ref{sec:leptonId}. |
214 |
> |
If more than one lepton candidate satisfies the tight requirements, the one with the |
215 |
> |
highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective |
216 |
> |
discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}). |
217 |
> |
We require the transverse momentum to exceed 20 GeV, as it maximizes |
218 |
> |
the significance of the \WZ\ signal with respect to background as shown in |
219 |
> |
Fig.~\ref{fig:wlpt_cutS}. |
220 |
> |
|
221 |
> |
An additional requirement on the isolation between electron and muon candidates is applied |
222 |
> |
for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron |
223 |
> |
candidate associated with the \W boson decay and any of the two muons associated with |
224 |
> |
the \Z boson decay to be greater than 0.1. |
225 |
> |
|
226 |
> |
This requirement allows suppressing the contribution of $\Z \to \mu\mu$ |
227 |
> |
decays, where one of the two muons radiates a photon which is reconstructed |
228 |
> |
as an electron, possibly after conversion. This can be seen as a peak in the dimuon |
229 |
> |
invariant mass at around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}. |
230 |
> |
|
231 |
> |
The summary of the selection criteria is given in Table~\ref{tab:allcuts}. |
232 |
> |
|
233 |
> |
The expected number of the events satisfying the sequential steps of the selection |
234 |
> |
is listed in Tables~\ref{tab:sel-effA}. |
235 |
> |
In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for different |
236 |
> |
\W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z |
237 |
> |
boson decays are almost always are reconstructed with the correct flavor. As expected, |
238 |
> |
there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$ |
239 |
> |
decays. However, this contribution is suppressed, mostly due to $p_T$ requirement |
240 |
> |
on the third lepton, as leptons from $\tau$ decays are not as energetic as those from |
241 |
> |
$\W \to \ell \nu$ processes. |
242 |
> |
|
243 |
> |
In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we |
244 |
> |
display the fraction of reconstructed \WZ events with correctly-matched leptons. |
245 |
> |
It can be seen that the lepton associated with the \W boson decay is correctly matched |
246 |
> |
to the true Monte Carlo lepton from the \W boson decay in more than 90\% of |
247 |
> |
the cases, even for events with several lepton candidates available to be associated |
248 |
> |
to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is, |
249 |
> |
therefore, justified. |
250 |
> |
|
251 |
> |
\begin{table}[p] |
252 |
> |
\begin{center} |
253 |
> |
|
254 |
> |
\begin{tabular}{lcc|cc|cc|cc|} \hline |
255 |
> |
\multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline \hline |
256 |
> |
Step & $\WZ \to 3e\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
257 |
> |
All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
258 |
> |
Found $\Z \to ee$ & 73.9 & 39.9\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.353\% & $2.78\cdot 10^4$ & 19.4\% \\ |
259 |
> |
Second \Z veto & 73.9 & 100\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\ |
260 |
> |
Found $\W \to e\nu$ & 37.4 & 50.6\% & 310 & 0.062\% & 13.8 & 0.474\% & 171 & 0.61\% \\ |
261 |
> |
\W lepton $p_T$ cut & 32.5 & 86.7\% & 86.8 & 28\% & 8.26 & 59.7\% & 23.4 & 13.7\% \\ |
262 |
> |
Passes HLT & 32.3 & 99.6\% & 86.8 & 100\% & 8.26 & 100\% & 23.3 & 99.7\% \\ |
263 |
> |
\Z mass window & 29.5 & 91.2\% & 51.9 & 59.8\% & 3.26 & 39.5\% & 17.3 & 74\% \\ |
264 |
> |
\hline |
265 |
> |
Overall efficiency & & 15.9\% & & 0.00089\% & & 0.00039\% & & 0.012\% \\ |
266 |
> |
\hline |
267 |
> |
|
268 |
> |
\multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline |
269 |
> |
Step & $\WZ \to 2e1\mu\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{t}\ell\ell$ & $ \epsilon$\\ \hline |
270 |
> |
All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
271 |
> |
Found $\Z \to ee$ & 63.8 & 34.5\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.35\% & $2.78\cdot 10^4$ & 19.4\% \\ |
272 |
> |
Second \Z veto & 63.7 & 99.9\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\ |
273 |
> |
Found $\W \to \mu\nu$ & 42.6 & 66.8\% & $2.19\cdot 10^3$ & 0.44\% & 55.6 & 1.91\% & 748 & 2.69\% \\ |
274 |
> |
\W lepton $p_T$ cut & 35.1 & 82.5\% & 9.58 & 0.44\% & 16.4 & 29.5\% & 9.49 & 1.27\% \\ |
275 |
> |
Passes HLT & 34.3 & 97.6\% & 8.32 & 86.9\% & 14.1 & 86\% & 9.12 & 96.1\% \\ |
276 |
> |
\Z mass window & 30.8 & 89.8\% & 7.31 & 87.9\% & 3.76 & 26.7\% & 8 & 87.8\% \\ |
277 |
> |
\hline |
278 |
> |
Overall efficiency & & 16.7\% & & 0.00013\% & & 0.00045\% & & 0.0056\% \\ |
279 |
> |
\hline |
280 |
> |
|
281 |
> |
\multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline |
282 |
> |
Step & $\WZ \to 2\mu1e$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
283 |
> |
All events & 190 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
284 |
> |
Found $\Z \to \mu\mu$ & 75.2 & 39.7\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\ |
285 |
> |
Second \Z veto & 75.2 & 100\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\ |
286 |
> |
Found $\W \to e\nu$ & 44 & 58.5\% & 702 & 0.12\% & 15.1 & 0.54\% & 213 & 0.67\% \\ |
287 |
> |
\W lepton $p_T$ cut & 38.4 & 87.2\% & 464 & 66.2\% & 10.3 & 68\% & 50.5 & 23.7\% \\ |
288 |
> |
$\Delta R(e,\mu)$ cut & 38.4 & 99.9\% & 93 & 20\% & 7.15 & 69.6\% & 23.3 & 46\% \\ |
289 |
> |
Passes HLT & 37.3 & 97.1\% & 88.8 & 95.5\% & 6.62 & 92.7\% & 23.1 & 99.4\% \\ |
290 |
> |
\Z mass window & 33.6 & 90.1\% & 50.3 & 56.6\% & 2.84 & 42.9\% & 18.8 & 81.4\% \\ |
291 |
> |
\hline |
292 |
> |
Overall efficiency & & 17.7\% & & 0.00086\% & & 0.00034\% & & 0.013\% \\ |
293 |
> |
\hline |
294 |
> |
%\end{tabular} |
295 |
> |
%\begin{tabular}{lcc|cc|cc|cc|} \hline |
296 |
> |
\multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline |
297 |
> |
Step & $\WZ \to 3\mu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
298 |
> |
All events & 189 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
299 |
> |
Found $\Z \to \mu\mu$ & 83.8 & 44.3\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\ |
300 |
> |
Second \Z veto & 83.6 & 99.8\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\ |
301 |
> |
Found $\W \to \mu\nu$ & 51.8 & 62\% & $2.52\cdot 10^3$ & 0.44\% & 34.8 & 1.25\% & 810 & 2.54\% \\ |
302 |
> |
\W lepton $p_T$ cut & 42.5 & 81.9\% & 1.84 & 0.07\% & 1.16 & 3.33\% & 8.89 & 1.1\% \\ |
303 |
> |
Passes HLT & 42.2 & 99.4\% & 1.84 & 100\% & 1.16 & 100\% & 8.89 & 100\% \\ |
304 |
> |
\Z mass window & 38.5 & 91.1\% & 1.84 & 100\% & 1.16 & 100\% & 7.78 & 87.5\% \\ |
305 |
> |
\hline |
306 |
> |
Overall efficiency & & 20.3\% & & 0.000032\% & & 0.00014\% & & 0.0054\% \\ |
307 |
> |
\hline |
308 |
> |
\end{tabular} |
309 |
> |
|
310 |
> |
\caption{Expected number of signal and background events passing the different |
311 |
> |
selections steps together with the efficiency of each requirement and total efficiency of |
312 |
> |
selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity |
313 |
> |
of 1 \invfb.} |
314 |
> |
\label{tab:sel-effA} |
315 |
> |
\end{center} |
316 |
> |
\end{table} |
317 |
> |
|
318 |
> |
\begin{table}[p] |
319 |
> |
\begin{center} |
320 |
> |
\begin{tabular}{l|ccccc} |
321 |
> |
\hline \hline |
322 |
> |
& \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\ |
323 |
> |
Reconstruction channel & $e \nu$ |
324 |
> |
& $\mu \nu $ |
325 |
> |
& $\tau \nu \to e \nu \nu $ |
326 |
> |
& $\tau \nu \to \mu \nu \nu $ |
327 |
> |
& $\tau \nu \to {\rm hadrons~} \nu$ |
328 |
> |
\\ \hline |
329 |
> |
$3e$ & 17.4\% & 0.0319\% & 6.42\% & 0\% & 0.162\% \\ |
330 |
> |
$2e1\mu$ & 0\% & 18.6\% & 0\% & 5.53\% & 0.0485\% \\ |
331 |
> |
$2\mu1e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
332 |
> |
$3\mu$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
333 |
> |
\hline \hline |
334 |
> |
|
335 |
> |
& \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\ |
336 |
> |
Reconstruction channel & $e\nu$ |
337 |
> |
& $\mu\nu$ |
338 |
> |
& $\tau\nu \to e\nu\nu$ |
339 |
> |
& $\tau\nu \to \mu\nu\nu$ |
340 |
> |
& $\tau\nu \to {\rm hadrons~}\nu$ |
341 |
> |
\\ \hline |
342 |
> |
$3e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
343 |
> |
$2e1\mu$ & 0.0104\% & 0\% & 0\% & 0\% & 0\% \\ |
344 |
> |
$2\mu1e$ & 19.6\% & 0.0208\% & 5.56\% & 0\% & 0.18\% \\ |
345 |
> |
$3\mu$ & 0\% & 23.4\% & 0.0573\% & 6.77\% & 0.0164\% \\ |
346 |
> |
\hline \hline |
347 |
> |
\end{tabular} |
348 |
> |
\end{center} |
349 |
> |
\caption{Selection efficiency for signal events in the four selection channels for the different |
350 |
> |
generated \W and \Z decay channels.} |
351 |
> |
\label{tab:wz-effimatrix} |
352 |
> |
|
353 |
> |
%\end{table} |
354 |
> |
%\begin{table}[tbp] |
355 |
> |
\begin{center} |
356 |
> |
\begin{tabular}{llcc} \hline |
357 |
> |
& & \multicolumn{2}{c}{Generated decay} \\ |
358 |
> |
& & \multicolumn{2}{c}{$\Z \to ee $} \\ |
359 |
> |
Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ \\ |
360 |
> |
\hline \hline |
361 |
> |
\multicolumn{4}{c}{all} \\ \hline |
362 |
> |
$3e$ & all & 1644 events & 3 events \\ |
363 |
> |
$3e$ & matched \Z & 93$\pm$1\% & 100\%\\ |
364 |
> |
$3e$ & matched \W & 92$\pm$1\% & 0\\ |
365 |
> |
$3e$ & matched \WZ & 91$\pm$1\% & 0\\ |
366 |
> |
\hline \hline |
367 |
> |
|
368 |
> |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
369 |
> |
$3e$ & all & 1602 events & 0 events \\ |
370 |
> |
$3e$ & matched \Z & 94$\pm$1\% & 0\\ |
371 |
> |
$3e$ & matched \W & 92$\pm$1\% & 0\\ |
372 |
> |
$3e$ & matched \WZ & 91$\pm$1\% & 0\\ |
373 |
> |
\hline \hline |
374 |
> |
|
375 |
> |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
376 |
> |
$3e$ & all & 42 events & 3 events \\ |
377 |
> |
$3e$ & matched \Z & 93$\pm$4\% & 100\%\\ |
378 |
> |
$3e$ & matched \W & 91 $\pm$5\% & 0\\ |
379 |
> |
$3e$ & matched \WZ & 91$\pm$5\% & 0\\ |
380 |
> |
\hline \hline |
381 |
> |
|
382 |
> |
\multicolumn{4}{c}{all} \\ \hline |
383 |
> |
$2e1\mu$ & all & 0 events & 1746 events \\ |
384 |
> |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
385 |
> |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
386 |
> |
$2e1\mu$ & matched \WZ & 0 & 100\%\\ |
387 |
> |
\hline \hline |
388 |
> |
|
389 |
> |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
390 |
> |
$2e1\mu$ & all & 0 events & 1715 events \\ |
391 |
> |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
392 |
> |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
393 |
> |
$2e1\mu$ & matched \WZ & 0 & 100\%\\ |
394 |
> |
\hline \hline |
395 |
> |
|
396 |
> |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
397 |
> |
$2e1\mu$ & all & 0 & 31 \\ |
398 |
> |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
399 |
> |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
400 |
> |
$2e1\mu$ & matched \WZ & 0 & 100\% \\ \hline \hline |
401 |
> |
\end{tabular} |
402 |
> |
\end{center} |
403 |
> |
\caption{Fractions of events with correctly matched leptons |
404 |
> |
to true decay product of \W and \Z decays for final states |
405 |
> |
with generated $\Z\to ee$ decays} |
406 |
> |
\label{tab:wz-matcheffi-Zee} |
407 |
> |
\end{table} |
408 |
> |
|
409 |
> |
|
410 |
> |
|
411 |
> |
\begin{table}[tbp] |
412 |
> |
\begin{center} |
413 |
> |
\begin{tabular}{llcc} \hline |
414 |
> |
& & \multicolumn{2}{c}{Generated decay:} \\ |
415 |
> |
& & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\ |
416 |
> |
Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ |
417 |
> |
\\ |
418 |
> |
\hline \hline |
419 |
> |
\multicolumn{4}{c}{all} \\ \hline |
420 |
> |
$2\mu1e$ & all & 1895 events & 2 events \\ |
421 |
> |
$2\mu1e$ & matched \Z & 100\% & 100\%\\ |
422 |
> |
$2\mu1e$ & matched \W & 99$\pm$1\% & 0\\ |
423 |
> |
$2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\ |
424 |
> |
\hline \hline |
425 |
> |
|
426 |
> |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
427 |
> |
$2\mu1e$ & all & 1847 events & 0 events \\ |
428 |
> |
$2\mu1e$ & matched \Z & 100\% & 0\\ |
429 |
> |
$2\mu1e$ & matched \W & 99$\pm$1\% & 0\\ |
430 |
> |
$2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\ |
431 |
> |
\hline \hline |
432 |
> |
|
433 |
> |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
434 |
> |
$2\mu1e$ & all & 48 events & 2 events \\ |
435 |
> |
$2\mu1e$ & matched \Z & 100\% & 100\%\\ |
436 |
> |
$2\mu1e$ & matched \W & 94$\pm$3.5\%& 0\\ |
437 |
> |
$2\mu1e$ & matched \WZ & 94$\pm$3.5\% & 0\\ |
438 |
> |
\hline \hline |
439 |
> |
|
440 |
> |
\multicolumn{4}{c}{all} \\ \hline |
441 |
> |
$3\mu$ & all & 0 events & 2251 events \\ |
442 |
> |
$3\mu$ & matched \Z & 0 & 94$\pm$1\%\\ |
443 |
> |
$3\mu$ & matched \W & 0 & 93$\pm$1\%\\ |
444 |
> |
$3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\ |
445 |
> |
\hline \hline |
446 |
> |
|
447 |
> |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
448 |
> |
$3\mu$ & all & 0 events & 2207 events \\ |
449 |
> |
$3\mu$ & matched \Z & 0 & 94$\pm$1\%\\ |
450 |
> |
$3\mu$ & matched \W & 0 & 93$\pm$1\%\\ |
451 |
> |
$3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\ |
452 |
> |
\hline \hline |
453 |
> |
|
454 |
> |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
455 |
> |
$3\mu$ & all & 0 events & 44 events \\ |
456 |
> |
$3\mu$ & matched \Z & 0 & 91$\pm$4\%\\ |
457 |
> |
$3\mu$ & matched \W & 0 & 91$\pm$4\%\\ |
458 |
> |
$3\mu$ & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline |
459 |
> |
\end{tabular} |
460 |
> |
\end{center} |
461 |
> |
\caption{Fractions of MC \WZ events with correctly matched leptons |
462 |
> |
to true decay product of \W and \Z decays for final states |
463 |
> |
with generated $\Z\to \mu\mu$ decays} |
464 |
> |
\label{tab:wz-matcheffi-Zmumu} |
465 |
> |
\end{table} |
466 |
|
|
467 |
|
|
468 |
< |
\subsection{Signal extraction} |
468 |
> |
%\subsection{Signal extraction} |
469 |
> |
%\input D0Matrix |
470 |
> |
\input zjetbackground |
471 |
> |
|
472 |
> |
|
473 |
> |
\subsection{Complementary studies: can we use the neutrino?} |
474 |
> |
|
475 |
> |
In $\WZ \to \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino |
476 |
> |
coming from the \W-boson decay leaves the detector with a significant |
477 |
> |
amount of energy, which should reflect in a large transverse missing |
478 |
> |
energy measurement. On the other side, no large MET is expected for |
479 |
> |
the most important background categories, especially \Zjets, |
480 |
> |
\Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be |
481 |
> |
seen in Figure~\ref{fig:met}. |
482 |
> |
|
483 |
> |
Another variable sensitive to the presence of the neutrino |
484 |
> |
is the W transverse mass $m_T^W$, obtained by combining the missing |
485 |
> |
energy vector and the lepton associated to the \W-boson decay. |
486 |
> |
The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}. |
487 |
> |
The signal yield could be extracted from that distribution. |
488 |
> |
This requires however additional studies and it has not been |
489 |
> |
done at this stage. |
490 |
> |
|
491 |
> |
|
492 |
> |
\section{Systematic uncertainties} |
493 |
> |
\input Sys |
494 |
> |
|
495 |
> |
|
496 |
> |
\begin{figure}[bt] |
497 |
> |
\begin{center} |
498 |
> |
\scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}} |
499 |
> |
\caption{Missing transverse energy for the four signal categories. |
500 |
> |
The distributions show the number of expected events |
501 |
> |
for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev |
502 |
> |
are shown. All selection cuts are applied.} |
503 |
> |
\label{fig:met} |
504 |
> |
\end{center} |
505 |
> |
\end{figure} |
506 |
> |
|
507 |
> |
\begin{figure}[bt] |
508 |
> |
\begin{center} |
509 |
> |
\scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}} |
510 |
> |
\caption{\W transverse mass for the four signal categories. |
511 |
> |
The distributions show the number of expected events |
512 |
> |
for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown. |
513 |
> |
All selection cuts are applied.} |
514 |
> |
\label{fig:mtw} |
515 |
> |
\end{center} |
516 |
> |
\end{figure} |
517 |
|
|
518 |
|
|
124 |
– |
\subsection{Systematic uncertainties} |
519 |
|
|
520 |
|
|
521 |
|
|